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ABSTRACT

Lymphatic vessels are important in
removing excess fluid from the intestine and
transporting the fluid to veins in the neck.
However, in some diseases, neck vein pressure
is increased and the high pressures may slow
lymph flow. This study was to test the
hypothesis that lymphatic clearance offluid
from the intestine may be increased by
draining the lymphatics. Inflatable cuffs were
used to increase neck vein pressure and portal
venous pressure in anesthetized sheep. The
lymphatic vessel from one segment of small
intestine was cannulated and drained. The
lymphatic vessel to a control segment of
intestine was left intact. After 90 min. we
found significantly less fluid in the lumen of
the drained vs. control segments (7.4 ± 3.1
(SD) ml vs 11.5 ± 4.7 ml per gram dry tissue,
respectively). Also we found significantly less
tissue fluid in the drained vs control segments
(5.3 ± 0.3 mUg vs 6.0 ± 0.4 mUg). The findings
support the hypothesis that external diversion
of lymph in the presence ofan elevated central
venous pressure reduces edema formation.

Lymphatic vessels play an important role
in preventing edema because they remove
excess fluid from the tissue of most organs.
Normally fluid filters from the blood capil
laries and into the tissue spaces. Lymphatic
vessels remove the fluid from the tissues and
transport it to large lymphatic trunks such as

the thoracic duct. The thoracic duct drains
the fluid to veins within the neck. If capillary
filtration rate is increased, lymph flow must
increase to remove the excess fluid. If lymph
flow does not increase as much as capillary
filtration increases, some of the capillary
filtrate will accumulate within the tissue as
edema fluid.

The elevated venous pressure associated
with right heart failure places a double
burden on the lymphatic vessels (1). First,
the high venous pressure causes increased
capillary filtration throughout the body.
Second, the high pressure in the neck veins
opposes lymphatic drainage. Thus the
lymphatic vessels must transport an increased
fluid load against an increased outflow
pressure. Often the lymphatics fail, and
edema develops.

One way to improve lymph flow in heart
failure is to drain the thoracic duct. Investi
gators have cannulated the duct and allowed it
to drain freely or they have anastomosed the
duct to low pressure vessels in animals or
patients with heart failure (1-4). The thoracic
duct drainage reduced or eliminated edema.
However, the reduced edema cannot be
attributed solely to lymphatic drainage of
edema because, in many cases, venous pres
sure decreased. Thus capillary filtration may
have decreased. Our aim in this study was to
test the effect of external lymphatic drainage
on intestinal edema in sheep with right heart '
failure and constant portal venous pressure.
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METHODS

We anesthetized 5 sheep (36-43 kg) with
thiopental sodium, placed a tracheotomy tube
and ventilated the sheep with 30% Oz in air.
We cannulated a jugular vein and a femoral
artery. Then we opened the right chest above
the heart and placed inflatable cuffs around
the inferior and superior vena cava. We made
a midline abdominal incision to expose the
small intestine, and we placed a cannula into
the portal vein. Then we identified three -30
cm long segments of intestine. We ligated one
end of each segment and gently milked the
lumen contents from the segment. Then we
ligated the opposite end of the segment. The
segments were identified as baseline, control
and drained segments. We chose intestinal
segments with easily defined prenodal
lymphatic vessels that drained to different
lymph nodes. The segments were treated as
described below:

1) The baseline segment was removed, and
the volume of fluid in the lumen and tissue
was determined.
2) We cannulated the postnodallymphatic
for the drained segment.
3) We confirmed there were no postnodal
lymphatics from the control segment that ran
to the node serving the drained segment. We
left the lymphatics from the control segment
intact.

We used solid state pressure trans
ducers to monitor neck vein and portal vein
pressure, and aortic pressure. In our
preparation the intestinal segments were
approximately level with the right atrium of
the heart, and we set the zero pressure
reference level at the intestinal segments.
Blood samples were taken each 30 min. for
estimate of hematocrit and plasma protein
concentration. Protein concentration was
estimated with an American Optical
refractometer, and we used a membrane
oncometer to determine the plasma protein
osmotic pressure.

The Experiments

First we inflated the cuff around the
superior vena cava and elevated neck vein
pressure to 35-40 cmHzO (baseline = 0-5
cmHzO). Then we inflated the inferior vena
caval cuff. Because the inferior vena caval
cuff was between the hepatic veins and the
heart, portal venous pressure increased. We
used an electromechanical system to regulate
cuff inflation and control portal venous
pressure (5).

As soon as we elevated the venous
pressures, we placed the lymphatic cannula
from the drained segment into a beaker
located - 25 cm. below the intestine. Thus
lymph drained freely into the beaker. Each 15
min. we removed the cannula from the
beaker, placed the cannula tip into a
calibrated pipette and timed the lymph flow
rate (QL)' After each QL determination, we
poured the lymph from the pipette into the
beaker. The total volume of drained lymph
was determined as the volume of fluid in the
beaker at the end of the experiment.

We maintained the neck and portal
venous pressures elevated for 90 min, then we
euthanized the sheep and removed the
control and drained segments of intestine.

Intestinal Fluid Volume

To determine the volume of fluid in the
lumen of the intestinal segments, we cut the
end of each segment and drained the fluid
into a pan. The amount of fluid was
estimated by weighing the pan. Once we had
drained all fluid from the lumen, we weighed
each intestinal segment (wet weight). The
segments were dried to constant weight in an
oven at 60°. To calculate the amount of fluid
in the tissue of each segment, we subtracted
the dried segment weight from the segment
wet weight. To account for differences in
segment size, fluid volumes were normalized
with segment dry weight.
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Fig. 1. Lymph flow rate (upper panel),
portal vein pressure and plasma protein
osmotic pressure (lower panel) vs time
for all sheep.
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Statistics

Data are mean ± SD in the text and
mean ± SE in figures. We used student's
t-test to test for differences in data. P < 0.05
was accepted to indicate significant
differences.

RESULTS

The initial neck vein pressure =2.8 ± 0.8
cmH20 and it increased to 36 ± 3 cmH20
when we inflated the cuff around the superior
vena cava. As shown in. Fig. 1, portal venous
pressure increased from 8.6 ± 2.6 to 23.5 ±
1.4 cmH20 when we inflated the inferior vena
caval cuff. When we inflated the vena caval
cuffs, blood pooled within the veins and

venous return to the heart was reduced. Also,
the high venous pressures caused consi
derable fluid loss from the vascular to the
extravascular compartments. Thus, to
maintain intravascular volume and cardiac
output, we infused 5,400 ± 1,100 ml of
warmed Ringer's solution intravenously. This
volume infusion caused plasma protein
concentration to decrease from 4.9 ± 0.4 gldl
at baseline to 2.2 ± 0.4 gldl at 90 min. The
decrease in plasma protein concentration
accounts for the decrease in plasma protein
osmotic pressure shown in the lower panel of
Fig. 1. Hematocrit decreased from 33 ± 4% to
25 ±6%.

At baseline, QL = 46 ± 26 ullmin and as
shown in Fig. 1, QL increased substantially
when we increased portal venous pressure.
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Fig. 2. Fluid accumulation in the lumen and tissue spaces and total fluid accumulation for the control and drained
segments. Fluid accumulation was calculated as the amount offluid in the control or drained segments at the end
of the 90 min. period of elevated venous pressure minus the amount of fluid in the baseline intestinal segment.
Asterisk (*) indicates data for drained segment significantly less than control (P<0.05).

We collected a total of 49 ± 29 ml of lymph
during the 90 min. experiment period.

The baseline intestinal segment lumen
fluid volume was 0.28 ± 0.41 ml per g dry
weight. (As expected, the baseline lumen fluid
volume was almost zero because we emptied
the lumen fluid from the segment only 10-20
min. before we removed the segment.) Lumen
fluid volumes for the control and drained
segments (11.5 ± 4.7 and 7.4 ± 3.1 mllg
respectively) were significantly greater than
the baseline segment fluid volume. Similarly
the tissue fluid volumes for the control and
drained segments (6.0 ± 0.4 and 5.3 ± 0.3
mllg respectively) were significantly greater

than the baseline segment tissue fluid of
4.0 ± 0.4 mllg.

The baseline fluid volumes are our
estimates of the volumes before we increased
the venous pressures. The control segment
fluid volumes are the fluid volumes after the
90 min. period of elevated pressure. Thus to
estimate the amount of fluid that accumu
lated in the control segment during the 90
min. period of elevated pressures, we
subtracted the baseline fluid volumes from
the control segment fluid volumes. Similarly
to estimate the amount of fluid accumulation
in the drained segments, we subtracted the
amount of fluid in the baseline segments from
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the amount of fluid in the drained segments.
The results of these calculations are shown in
Fig. 2 in which we have plotted the volume of
fluid which accumulated in the control and
drained segments over the 90 min. period of
elevated venous pressures. As shown in Fig. 2,
significantly less fluid accumulated in the
tissue spaces and in the lumen of the drained
vs. control segments. Furthermore the total
fluid accumulation (tissue fluid + lumen
fluid) was significantly less in the drained vs.
control segments.

DISCUSSION

Our results support the hypothesis that
intestinal lymphatic clearance may be
improved by external lymphatic drainage
(1-4). Because the lymphatic vessels from the
control intestinal segments in our sheep were
intact, lymph flow from those segments was
opposed by the high neck vein pressure. On
the other hand, neck vein pressure had no
effect on lymph flow from the drained
segments because the lymph from those
segments drained freely into a beaker. We
believe the greater lymphatic clearance in the
drained (vs. control) segments accounts for
the significantly lower amount of fluid in the
drained segments.

The high neck vein pressure was the
main factor opposing lymph flow from the
control segments in our sheep. However, in
addition, lymphatic resistance may have
reduced lymph flow (3,6). Lymph from the
control segments drained from the nodes,
through 20-30 cm of postnodal intestinal
lymphatic and through the thoracic duct
before it entered the veins. Other investi
gators have noted the resistance to flow at the
thoracic duct - neck vein junction may
interfere with lymph flow (3,6). Thus the
resistance to lymph flow may have impeded
lymph flow from the control intestinal
segment. We do not believe resistance
interfered with lymph flow from the drained
segments. We cannulated lymphatics from
the drained segments with 0.76 mm inside
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diameter silastic tubing. However, to mini
mize resistance, we cut the cannula near the
vessel and connected the cannula to larger
diameter tubing (2 mm inside diameter).
Furthermore we placed the outflow end of the
cannula - 25 cm below the intestinal segment.

Postnodal intestinal lymphatic vessels
actively pump lymph toward the neck veins
(7,8). This pumping activity is due to
spontaneous contraction of the lymphatic
vessel smooth muscle. Many investigators
have shown that pumping increases as the
pressure at the outflow end of the lymphatic
is increased. This phenomenon helps to
maintain lymph flow in spite of increased
outflow pressure. However, active pumping is
less effective in driving lymph against high
outflow pressures when lymph flow is
increased (9,10). Lymph formation was
greatly increased in our sheep. Furthermore,
active pumping may be weakened in
anesthetized sheep. Thus it is unlikely the
active lymphatic pump could have main
tained a maximum flow rate from the control
segments in our sheep.

We increased portal venous pressure in
our sheep because we wanted to increase
capillary filtration rate and challenge the
lymphatics. According to the Starling
hypothesis, the total intravascular pressure
causing fluid filtration is the capillary
hydrostatic pressure minus plasma protein
osmotic pressure. As shown in Fig. 1, plasma
protein osmotic pressure decreased
substantially. Thus the increase in capillary
filtration rate resulted from both the increase
in hydrostatic pressure and the decrease in
osmotic pressure.

As shown in Fig. 2, much more fluid
accumulated within the intestinal lumen than
in the tissues. Thus most of the capillary
filtrate flowed through the tissue spaces,
across the mucosa and into the lumen. Both
tissue fluid and lumen fluid were less in
drained vs. control segments. However,
lymphatics drain only from the tissues. Thus,
in drained segments, the lymphatic vessels
probably siphoned some of the capillary
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filtrate as it passed through the tissue spaces
toward the lumen. In addition to the tissue
fluid and lumen fluid, some fluid wept from
the surface of the intestine in our sheep. We
could not quantitate this fluid, but it was
much less than the lumen fluid volume.

Our results support the findings by other
investigators that edema may be reduced by
draining the thoracic duct (1-4). Our study
differs from previous studies because we
maintained venous pressure constant.
Furthermore, we drained a lymphatic from a
specific organ whereas the thoracic duct
drained by other investigators carries lymph
from most of the body.
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from most of the body. 
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