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This research examines four frequently used centrality indices—degree, closeness, 
betweenness, and eigenvectors—to understand the extent to which their clear theoretical 
distinctions are reflected in differences in empirical performance. Even for stylized 
networks in which one centrality index may seem more relevant than the others, the four 
indices are frequently highly correlated. This result can be interpreted as good news: it 
does not diminish the conceptual distinctions, yet it suggests the indices are rather 
robust, yielding similar information about actors’ positions in networks, which can be 
reassuring given their widespread use by applied network analysts who may not 
appreciate the theoretically distinct origins and definitions. This research also compares 
computational speed across the centrality indices as another practical element that may 
help determine the choice of centrality index. 
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Social networks and an interest in understanding social connections 
seem pervasive. In many social network studies, the starting point of the 
analysis is the identification of actors with disproportionately high or low 
social capital. Locating actors who are important in some manner is 
usually achieved via centrality indices. Numerous actor-level indices of 
centrality are available to characterize actors’ positions and structural ties 
in social networks. Freeman’s (1978) seminal paper introduced the distinct 
theoretical underpinnings for degree, closeness, and betweenness 
centralities. Degree reflects overall volumes of ties, closeness captures the 
extent to which the relational ties traverse few “degrees of separation,” and 
betweenness highlights those actors through whom much of the rest of the 
network is interconnected. In addition to these centrality measures, 
scholars have developed many more indices, each with its own character 
and strengths. 

These centrality indices have been used in a wide variety of social 
network applications. Consider the following:  
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 Degree centralities are perhaps the easiest to understand—they 
reflect sheer numbers of links and/or the strengths of those ties. 
For example, certain social status is conveyed upon people who 
have many followers on Twitter (Zhang et al., 2015), or many 
friends or likes on Facebook (Sabate, Berbegal-Mirabent, Canabate, 
& Lebherz, 2014).  

 Actors with high closeness centralities are those who are directly 
interconnected to many other players in the network. The 
numerous direct ties can lend an efficiency in coordinating work 
efforts in alliances between organizations (e.g., Koschmann & 
Wanberg, 2016). Similarly, closeness can enhance the ability of 
animal groups who live together and are aided in achieving their 
group goals by their close interactions (Wey, Blumstein, Shen, & 
Jordan, 2008). As another example, people tend to pre-program 
phone numbers of their closest ties into their mobile phones; a 
simple observation being adopted by law enforcement agencies to 
locate criminals (Ferrara, De Meo, Catanese, & Fiumara, 2014). 
Closeness is also examined in brain connectivity data where local 
pathways affect overall circuitry (Rubinov & Sporns, 2010). 

 Betweenness has long been recognized as a quality that can enhance 
the social capital of employees in organizations who bridge 
departments because such boundary spanners influence the flow of 
communication and information between work groups (Brass, 
1984). The importance of an actor with a high betweenness 
centrality can also be seen in the hub-and-spoke design of today’s 
airline industry. For example, when bad weather disrupts an airport 
that is a hub between other cities, customers are affected in the 
origin and destination cities (O’Kelly, 2016). 
 

Experienced network scholars might appreciate the distinct relative 
advantages of different centrality indices in different network applications. 
Yet the vastness of the options of these (and other) centrality indices can 
make the choice overwhelming for scholars and practitioners with less 
network experience—an occurrence more frequent than ever given the 
increased popularity and study of social network phenomena. Thus, in this 
investigation, we examine four of the more frequently implemented 
centrality indices to ascertain whether their purported theoretical 
distinctions hold empirically. If not, could the selection of a theoretically 
suboptimal index disguise apparent structure or otherwise yield 
misleading results? If the indices perform differently on different 
structures of social networks, we would need to understand how to 
diagnose the identifying characteristics of a network to suggest the optimal 
selection of a centrality index. If instead, the indices are fairly similar in 
their empirical performance (even granting their conceptual differences), 
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then the selection of a centrality index is less critical and the values 
obtained are therefore more robust conceptually.  

This research is intended to be useful in helping social network 
analysts select among the myriad of centrality indices. While network 
scholars emphasize theoretical distinctions, in practice it is not unusual for 
social network researchers to observe that their centralities are at least 
moderately correlated. To the best of our knowledge, these patterns have 
not been systematically examined, thus we seek to do so in this research. 
In addition, we conduct a complementary investigation into the relative 
computing times for the four centrality indices. The reasoning here is that 
if the empirical performances of the centrality indices are comparable, 
then the efficiencies with which the centralities may be estimated may 
become an important choice criterion, at least when analyzing large 
networks. 

In the section that follows, we first draw on the literature and review 
the centrality indices that serve as the focus of this research. In Study 1, we 
examine the performance of the centrality indices on small, stylized 
network structures to observe the extent to which the different indices 
begin to capture unique network patterns. In Study 2, we extend the size of 
the exemplar networks, and Study 3 turns to the practical matter of the 
comparative computing times for the centralities as an indicator of the 
efficiencies of the algorithms. 
  
Literature and Definitions of Four Focal Centrality Indices 
 

Novice social network analysts often find it difficult to discern which 
centrality index is most appropriate to use given their research data. The 
social network researcher has gone through what can often be substantial 
efforts to obtain a sociomatrix. Next, the researcher is eager to analyze the 
data to learn what patterns and structures are exhibited in the network. 
With data in hand, the network analyst opens any of a number of popular 
network analysis computing packages and finds vast numbers of choices of 
a centrality index to describe the network. We have empathy particularly 
for novice social network researchers for whom the numerous options can 
seem overwhelming. Their confusions leads to the inevitable question, 
“Which centrality index should I use?” The purpose of this research is to 
help assist in answering that question. 
 Table 1 lists several popular social network analysis packages, 
beginning with UCINet (given both its prevalence and its importance in 
the legacy of social network analysis). These software providers offer users 
a substantial number of options. Yet there are only four centrality indices 
that appear across most of the software packages: degree, closeness, 
betweenness, and eigenvectors. Various research articles have certainly 
also considered alternative centrality indices, such as information 
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centrality (Rothenberg et al., 1995; Stephenson & Zelen, 1989), or 
generalizations of indices for directed graphs (e.g., Freeman, Borgatti,  
 
Table 1 
Centrality Indices Offered in Popular Social Network Analysis Packages 
and Procedures 
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Other centrality indices: 

UCINet     attribute weighted, beta reach, Bonacich 
power, edge betweenness, flow 
betweenness, Hubbel, influence, 
information, inverse weighted degree, 
Katz 

Mathematica     eccentricity, edge betweenness, 
geoprojection, hub authority or HITS 
(hyperlink-induced topic search), Katz, 
link rank, PageRank, radiality, status 

NetMiner     community, coreness, decay, effects, 
HITS, information, flow betweenness, 
load, PageRank, power, status 

NetworkX 
and LibSNA 

    current flow, communicability, 
dispersion, edge betweenness, Katz, 
load 

NodeXL and 
SNAP 

    PageRank 

Pajek     Hubs-authorities, proximity prestige, 
Laplacian 

StatNet     Bonacich power, prestige, stress 
 

& White, 1991; White & Borgatti 1994), weighted ties (e.g., Opsahl, 
Agneessens, & Skvoretz, 2002), graphs with inherent subgroup structures 
(e.g., Everett & Borgatti 1999), a focus on a micro (“local”) or macro 
(“global”) structure, or analyzing a particular actor through an egocentric 
network lens versus examining a collection of actors in a sociocentric 
approach to the network (cf., Scott, 2012). Yet for all the variety, the four 
indices we have selected—degree, closeness, betweenness, and 
eigenvectors—seem most transferable in their general use across network 
textbooks, research articles, and available software packages. Thus we 
focus on these four indices. 
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As Freeman (1978, p.219) stated, “…each [centrality] measure is 
associated with some sort of intuitive basis or rationale for its own 
particular structural property.” Here we consider those rationales and the 
computational formulae for each of the indices. 

Degree. Stated simply, an actor’s degree reflects the extent to which the 
actor is “in the thick of things” (Freeman, 1978, p.219; see also Bolland, 
1988; Knoke & Yang, 2007; Rothenberg et al., 1995; Wasserman & Faust, 
1994). Define a 𝑔 × 𝑔  sociomatrix or adjacency matrix on 𝑔  actors, 

𝑿 = {𝑥𝑖𝑗}, for actors in rows 𝑖 = 1,2, …𝑔 extending ties to the same set of 

actors in columns 𝑗 = 1,2, …𝑔 . Freeman (1978, p.219) defined the in-
degree as the column sum and the out-degree as the row sum. Figure 1 
depicts a “real” network (from a public domain website) in which the 
actors’ varying degrees are represented by larger nodes in the graph. The 
notion of an actor degree is intuitively understood as the volume of 
interconnections, and accordingly is particularly appealing to novice 
network modelers for that reason. The centrality index is also the easiest to 
compute and the fastest in its calculation. 
 
Figure 1. Social Network Displaying Different Actor Degree Centralities. 

 

 
 

Note: Public domain figure from http://www.annmccranie.net/site/links.html. 

 
For binary ties, the in-degree and out-degrees for actor or node “𝑖” are 

computed: 

𝐶𝐷−𝑖𝑛(𝑖) = ∑ 𝑥𝑗𝑖
𝑔
𝑗=1,𝑖≠𝑗                    𝐶𝐷−𝑜𝑢𝑡(𝑖) = ∑ 𝑥𝑖𝑗

𝑔
𝑗=1,𝑖≠𝑗 . 

Each actor’s degree centrality index is normed as 𝐶′𝐷(𝑖) =
𝐶𝐷(𝑖)

𝑔−1
, given that 

(𝑔 − 1) is the maximum possible number of links for an actor to the others 
in the network. 

(1) 
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Closeness. An actor’s closeness measures the extent of their proximity 
to other actors in the network. Closeness centrality is computed using the 
geodesics, or shortest paths between actors (Freeman, 1978; also see 
Friedkin, 1991; Smith & Moody, 2013; Stephenson & Zelen, 1989). The 
term 𝑑𝑖𝑗 represents the distance or number of edges in the geodesic linking 

actors i and j, i.e., the length of the shortest tie that connects them. 
Closeness is “based upon the degree to which [an actor] is close to all other 
[actors] in the [network]” and in some applications may reflect an 
efficiency of flow throughout the network (Freeman, 1978, p. 224). In 
Figure 2, the quality that closeness centrality is intended to express is clear 
in that for the circle of actors in the center (or even among the actors in the 
groups to the left or to the right), any given actor can reach most of the 
other actors in the network directly or via short geodesics. In almost any 
real network, some actors are naturally farther from the others, as in this 
illustration in which they form a periphery (a particular structure from the 
literature we shall discuss in more detail shortly). 
 
Figure 2. Social Network Displaying Different Actor Closeness 
Centralities. 

 

 
 
Note: Public domain figure from https://www.udacity.com/wiki/creating-
network-graphs-with-python.  
 

Closeness is the inverse of the sum of the geodesic distances. On binary 
and mutual or symmetric ties (i.e., 𝑿 = 𝑿′), it is defined as follows: 

𝐶𝐶(𝑖) =
1

∑ 𝑑𝑖𝑗
𝑔
𝑗=1,𝑖≠𝑗

. 

 

At most, one actor may be as far as (𝑔 − 1) steps from another, so the 
closeness centrality indices are normed as 𝐶′𝐶(𝑖) = (𝑔 − 1)[𝐶𝐶(𝑖)]. 

Betweenness. Unlike degree’s measure of the number of connections or 
closeness’s measure of the distance between actors, betweenness identifies 

(2) 
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how often a particular actor serves as a connection between other actors in 
the network. Betweenness is “based upon the frequency with which [an 
actor] falls between pairs of other [actors] on the shortest or geodesic 
paths connecting them” (Freeman, 1978, p.221; also see Costenbader & 
Valente, 2003; Mizruchi & Potts, 1998; Zemljič & Hlebec, 2005). It can 
somewhat capture the extent to which an actor might have a small role in a 
local network but a larger role in the overall, global network, akin to 
Granovetter’s (1973) notion of the strength of weak ties. Figure 3 displays 
nicely  the notion  of what  betweenness  centrality  is intended  to capture.  
 
Figure 3. Social Network Displaying Different Actor Betweenness 
Centralities. 

 

 
 

Note: Public domain figure from http://www.fmsasg.com/socialnetworkanalysis/. 

 
We have overlain the network picture with three circles to highlight three 
actors whose roles inarguably serve to span and connect parts of this 
network that would otherwise coexist independently. There are clusters of 
actors and fans of ties connecting to the three particular bridging actors, 
and those bridging actors would have high betweenness centralities. 

With 𝑔𝑖𝑗𝑘  representing the number of geodesics linking j and k that 

contain actor 𝑖, the betweenness indices on binary and symmetric ties are 
defined: 

𝐶𝐵(𝑖) = ∑
𝑔𝑖𝑗𝑘

𝑔𝑗𝑘

𝑔
𝑗<𝑘 . 

 

(3) 
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The maximum value for the betweenness index is [(𝑔 − 1)(𝑔 − 2)]/2, so 

this centrality index is normed as 𝐶′𝐵(𝑖) =
2𝐶𝐵(𝑖)

(𝑔−1)(𝑔−2)
=

2𝐶𝐵(𝑖)

𝑔2−3𝑔+2
. 

 
Eigenvector. The fourth centrality index that is commonly provided in 

software packages and therefore worthy of inclusion in this consideration 
is the set of values contained in the first eigenvector of the adjacency 
matrix (the vector associated with the largest eigenvalue).  Stated simply, 
actors get more “centrality credit” for being connected to other actors who 
are themselves well-connected. Bonacich (1972), building on Katz (1953), 
proposed that the first eigenvector of an adjacency matrix could serve as a 
centrality measure that would capture patterns of direct and indirect 
connections (also see Borgatti, Carley, & Krackhardt, 2006). Bonacich’s 
(1972) idea was that the eigenvectors (of symmetric sociomatrices and 
singular value decompositions of asymmetric sociomatrices) would 
capture the differential weighting of ties to partners who themselves are 
highly vs. less central. Specifically, ties are weighted more heavily when 
linked to actors who themselves are more central.  

Figure 4 shows the effect of direct and indirect ties. There are two large 
actor spheres, labeled “1” on the left and “2” on the right, each with three 
bold  ties  emanating  to and from the actors.  The sizes of these two actors’ 
  
Figure 4. Social Network Displaying Different Actor Eigenvector 

Centralities. 

 
Note: Public domain figure from http://www.smrfoundation.org/2009/09/27/social-
media-network-analysis-workshop-october-29th-in-mountain-view-ca/. 

 
spheres are comparable representing the fact that the two actors’ degree 
centralities are roughly the same. Even for actors such as these two with 
comparable degree centralities (or even comparable closeness or 
betweenness centralities), the eigenvector centrality assigns a higher index 



CENTRALITY INDICES 

80 
 

to an actor like “2” who is connected to many actors who are themselves 
highly inter-connected and represented by larger nodes. Actor “1” would 
have a smaller eigenvector centrality index because this actor is connected 
to other actors in the network who are less inter-connected themselves. 
(For a brief refresher on eigenvector centralities, please see the Appendix.) 

With those illustrations of an eigenvector centrality’s conceptual 
meaning, let us now define it. For the sociomatrix X, the eigen-
decomposition into an eigenvector, v, and eigenvalue, 𝜆, is reflected in the 
familiar equation:  

𝑿𝒗 = 𝜆𝒗. 

The eigenvector score for actor 𝑖  is 𝐶𝐸𝑉(𝑖) , a weighted function of the 
statuses of the other actors to whom actor 𝑖 is connected: 𝐶𝐸𝑉(𝑖) = 𝑥1𝑖𝑣1 +
𝑥2𝑖𝑣2 + ⋯+ 𝑥𝑔𝑖𝑣𝑔. 

Centrality indices based on eigenvectors have become quite popular 
and serve as the basis for numerous other indices, such as Bonacich’s 
power index (1987; 2007) and Google’s Page Rank index (Brin & Page, 
1998; Friedkin & Johnsen, 1990). The model has been expanded, such as 
finessing parameters to weight indirect ties to a greater or lesser extent 
(Bonacich, 1987).  
 Next, in Study 1, we examine the empirical performance of these four 
centrality indices on small social networks with exemplar structures, 
stylized networks drawn from the literature. Given the conceptual 
foundations of the centrality indices, network scholars might expect 
certain indices to be more meaningful for reflecting certain distinct 
structures. 
 

Study 1:  Performance of the Centralities on  
Small, Stylized Networks 

 
To understand the nature of the likely differences among the centrality 

indices, it should be useful to begin with small, simple example networks 
(rather than the real and complex networks captured in Figure 1 through 
4). Thus, in Figure 5 we have depicted social networks with prototypical 
structures that have been used to inform the conceptual development of 
many social networks analytics, from centrality indices to definitions of 
cliques and stochastic equivalence. These are stylized networks that we 
will use to establish whether the theoretically distinct underpinnings of the 
different centrality indices are manifest in their empirical performance in 
the descriptive statistics. Figure 5 also shows the relationships among 
these stylized networks.  
 
 
 

(4) 
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Figure 5. Stylized Idealized Network Structural Forms. 

 

 
 

Beginning with the “line” or “chain” in the upper-left of Figure 5 (per 
Freeman, 1978, p. 233, and Wasserman & Faust, 1994, p. 171), moving to 
the right creates a “hierarchy” (or “fork” or “tree,” as seen in Freeman, 
1978, p. 233 and Wasserman & Faust, 1994, p. 468). Moving further to the 
right creates the “star” or “wheel” with one highly central actor whose ties 
emanate out to other actors, who are not themselves connected (cf., 
Freeman, 1978, pp. 219, 233; Wasserman & Faust, 1994, p. 171). In the 
center of Figure 5 toward the right is the structure depicting a “core and 
periphery” in which a subset of actors within the network are highly 
interconnected, at the extreme forming a clique, and in which a second set 
of actors is connected to the first, but not as completely linked to those in 
the first set nor to each other (cf., Borgatti & Everett, 1999; Mizruchi & 
Potts, 1998, p. 357).  

Figure 5 also traces a path to the bottom of the figure to the “circle” or 
“ring” (Freeman, 1978, p. 234; Wasserman & Faust, 1994, p. 171). 
Following this path further to the right, Figure 5 represents a “regular” 
network as one in which there is little or no variance across the actors’ 
degree centralities, e.g., 𝐶𝐷(𝑖) = 𝑘 (where 𝑘 < (𝑔 − 1); (Watts & Strogatz, 
1998, p. 441). Adding some additional direct paths yields the “small world” 
network, in which a regular graph has been built up such that most actors 
have 𝐶𝐷(𝑖) = 𝑘  and several actors have 𝐶𝐷(𝑖) = 𝑘 + 1 (Watts & Strogatz, 
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1998, p. 441). Finally in Figure 5, at the lower-right is the “clique,” 
traditionally defined as a maximally connected subgraph within the 
network, wherein each actor’s degree centrality is its maximum value, 
𝐶𝐷(𝑖) = 𝑔 − 1 (Freeman, 1978, p. 236; Knoke & Yang, 2007, p. 67; Scott 
2012, p. 113). 

Given these structures, it would not seem unreasonable to anticipate 
that some centrality indices may be more sensitive to reflecting certain 
elements of different network structure. For example, one might expect 
cliques (lower right) to have high degrees, and high closeness, but low 
betweenness. In contrast, networks in the forms of lines and hierarchies 
(upper left) might yield greater betweenness indices. To examine whether 
these relationships hold, we analyzed each network to obtain all four sets 
of centralities. (For simplicity, we constructed the adjacency matrices to be 
binary and symmetric.) We then computed the means and standard 
deviations of these centralities across the actors within a given network. 
Figures 6 through 9 depict these means and standard deviations for each 
stylized network, for each centrality index.  

 
Results for Study 1 

 
Means and Standard Deviations 
 

Figure 6 shows that the clique structure has the highest mean degree 
(1.00) and with the circle and regular networks, the lowest standard 
deviation (0.00), given that all actors have the same role and are 
connected to the same extent, with no variability. Network structures with 
smaller average degrees include the hierarchy, line, and star networks 
(each mean = 0.29). Network structures with larger variability include the 
star (SD = 0.31) and core-peripheral (SD = 0.25), which make sense given 
the different roles various actors play in each of these networks, compared 
to the relatively more homogeneous roles actors play in the other 
networks. 

The summaries in Figure 6 certainly support Freeman’s 
characterization of degree reflecting centrality as actors being “in the thick 
of things.” The average degree tends to increase over the networks with 
network density, and the range of standard deviations suggest that degree 
centralities can be diagnostic in providing differential information across 
actors in a network. 
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Figure 6.  Degree Centralities Normalized: Means and Standard 
Deviations. 

 
Figure 7 shows some variability among the networks in terms of their 

average closeness indices, and relatively compressed variability in terms of 
the standard deviations of the actor indices within the networks. The two 
extreme means in Figure 7 depict nicely the characteristic captured by 
closeness. The clique mean is high (1.00, and SD = 0.00) because every 
actor is directly connected to all other actors, thus all actors are very close 
to one another. The line mean is the lowest (0.39) because while adjacent 
actors are near each other, the actors toward the ends must traverse 
through 2- or 3-length ties or longer. Thus as a whole, the actors in the line 
network have lower average closeness centralities. 
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Figure 7. Closeness Centralities Normalized: Means and Standard 
Deviations.

 
In Figure 8, it is perhaps not surprising to see low values of 

betweenness,  presumably  because of the relative prevalence of direct ties.  
 

Figure 8. Betweenness Centralities Normalized: Means and Standard 
Deviations. 
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That is, most of the actors can reach the others directly, without going 
through many others. Only in the exaggerated forms, such as a line or 
hierarchy do there exist actors in the roles of boundary spanners, whose 
importance in connecting others is highlighted. There is more variability 
in the standard deviations across the actors within the networks because 
the roles vary vis-à-vis the actors’ statuses as standing “between” others. 
The maximum means in this set of stylized networks are 0.35 and 0.33 for 
the hierarchy and line network structures, which sensibly reflect the extent 
to which any actor must go through multiple alters before reaching most of 
the other actors. The star has the largest standard deviation (0.38), with 
the hierarchy (0.29) and line (0.25) networks slightly less, because the 
actors’ positions are not uniform.  

Figure 9 shows the networks clustered relatively tightly for both the 
means and standard deviations of the eigenvector centralities. The means 
range from 0.34 to 0.38; the standard deviations range is slightly larger, 
from 0.00 (for the circle, clique, and regular networks) to 0.18 (for the line 
network). These results suggest the eigenvector-based scores are less 
variant than the other centrality indices. Regardless of the network form 
or the actors’ position in it, the actors’ scores vary very little. This quality 
can be useful in reflecting a certain robustness of the measure but such 
stability can also be a detriment if, as a result, the set of centrality indices 
is not diagnostically informative.  
 

Figure 9. Eigenvector Centralities Normalized: Means and Standard 
Deviations. 
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Collectively, Figures 6 through 9 confirm that properties of different 

network structures might be reflected better using one form of centrality 
index than another. As anticipated, cliques had high degrees, high 
closeness, and low betweenness profiles. Lines and hierarchies showed 
lower degrees, lower closeness, and greater betweenness indices.  

An unintended but useful consequence of these results is that one 
might imagine using these indices in “reverse.” That is prior to a graphical 
depiction, a researcher might guess that a network is rather clique-like if 
the degrees and closeness mean centralities were high, or like a line or 
hierarchy if the betweenness mean centralities were high. It should of 
course be noted that the differences in the empirical performances across 
the networks were rather slight. For example, the profiles (means or 
standard deviations) regarding eigenvector centralities (Figure 9) were not 
highly variant and so therefore would be less useful in diagnosing the 
nature of the network structure. 

 
Correlations among the Four Centralities 
 

While the means and standard deviations in Figures 6 through 9 seem 
to indicate that the indices reflect slightly different aspects of network 
structures, the impression is subjective. A more objective assessment of 
whether the patterns of centralities are similar or different would be 
expressed in correlation coefficients. Table 2 presents the correlations of 
the four centrality indices for each network. It is clear that most of the 
correlations are extremely large, suggesting that the subjective 
impressions that the figures showed some differences may have been 
overly influenced by several salient points rather than the entire network. 
Note that correlations were not estimable for the clique, circle, and regular 
networks, due to there being no variance in the indices across actors for 
the roles they represent in each of these structures; i.e., all actors have the 
same centralities in these networks. The magnitudes of the correlations 
seem to indicate that, at least for these small, stylized networks, the actors 
who have many ties (degrees) tend to be the same set of actors who are 
relatively closely connected to others, and are essentially the same actors 
who tend to exist between others, and who have similar eigenvector 
centrality scores.  

One thought might be that the correlations in Table 2 may be overly 
large due to the small size of the networks. We note, however, that it is not 
unusual for network researchers to report correlated centrality indices in 
real network data (cf., Bolland, 1988; Mizruchi & Potts, 1998; Rothenberg 
et al., 1995). Nevertheless, in the section that follows, we expand our 
investigation to larger networks. 
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Table 2 
Correlations among Four Centrality Indices for Stylized Networks  

Network Line Clique 
 degree close between eigenv degree close between eigenv 

Degree 1.000        
Closeness 0.844 1.000   all SD = 0, so n/a 
Betweenness 0.913 0.989 1.000      
Eigenvector 0.900 0.993 0.999 1.000     
 Hierarchy Star 
 degree close between eigenv degree close between eigenv 
Degree 1.000    1.000    
Closeness 0.999 1.000   1.000 1.000   
Betweenness 0.993 0.997 1.000  1.000 1.000 1.000  
Eigenvector 1.000 0.999 0.993 1.000 1.000 1.000 1.000 1.000 

 Circle Core-Peripheral 
 degree close between eigenv degree close between eigenv 

Degree     1.000    
Closeness all SD = 0, so n/a 0.999 1.000   
Betweenness     0.884 0.868 1.000  
Eigenvector     0.987 0.991 0.795 1.000 

 Regular Small World 
 degree close between eigenv degree close between eigenv 

Degree     1.000    
Closeness all SD = 0, so n/a 0.963 1.000   
Betweenness     0.969 0.999 1.000  
Eigenvector     0.941 0.895 0.902 1.000 

 
 

Study 2: Extending the Stylized Networks in Size:  
3 g and 3 Replications 

 
While the results on the stylized networks from Study 1 provide a basic 

level of information that the four centrality indices can seem to have some 
distinct patterns (in their means and standard deviations), and yet show 
some commonalities (i.e., high correlations), the analyses may be 
somewhat limited due to the small size of the networks. Such small 
networks have certainly been used throughout the literature to 
demonstrate concepts about network structure (cf., Wasserman & Faust, 
1994), but 𝑔 = 7  is not as large as some of the classic networks that 
scholars have analyzed in the social network literature, such as the 32 
actors in Freeman’s EIES (electronic information exchange system) 
network (Freeman & Freeman, 1979), Krackhardt’s 21 high-tech managers 
(Krackhardt, 1987), Sampson’s 18 monks (Sampson, 1968), or Newcomb’s 
17 freshmen (Newcomb, 1961). 

Thus, in this study, we examine the means, standard deviations, and 
correlations among the four centrality indices, on larger networks, for a 
subset of the stylized networks. Given the span of the means and standard 
deviations represented across the hierarchy, star, and core-periphery, we 
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carry these networks forward, reasoning that the other networks are easily 
derivable as special cases (e.g., a circle is easily transformed to a clique 
network, a hierarchy easily morphs into a line, etc.). The corresponding 
adjacency matrices are presented in Table 3.  

 
Table 3 
Stylized Networks for 𝑔 = 7 
 

Hierarchy / Fork  Star / Wheel                      Core-Periphery 
 

[
 
 
 
 
 
 
0 1 1 1 0 0 0
1 0 0 0 1 0 0
1
1
0
0
0

0
0
1
0
0

0 0 0 1 0
0 0 0 0 1
0
1
0

0
0
1

0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 

 

   

[
 
 
 
 
 
 
0 1 1 1 1 1 1
1 0 0 0 0 0 0
1
1
1
1
1

0
0
0
0
0

0 0 0 0 0
0 0 0 0 0
0
0
0

0
0
0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 

     

[
 
 
 
 
 
 
0 1 1 1 0 0 0
1 0 1 1 1 0 0
1
1
0
0
0

1
1
1
0
0

1 1 0 1 0
1 0 0 0 1
0
1
0

0
0
1

0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 

 

 
To create the network expansions, we increased the network size in two 

separate manners creating two distinct conditions, as: a) “3𝑔” and b) “3 
reps.” For the first, we simply raised the number of actors from 𝑔 = 7 to 
3 × 7 = 21 = 3𝑔, retaining the structures of the respective networks (e.g., a 
star will have 20 alters radiating from the center actor, etc.). We call this 
approach to network expansion “ 3𝑔 .” For the second approach, we 
replicate the network structure three times (and to assure connectivity, we 
add links from the first actor in the first set to an actor in the second and 
third sets). Thus, we draw three stars, each with seven actors, and then 
connect them. We call this approach “three replications” or “3 𝑟𝑒𝑝𝑠.” These 
approaches are contrasted in Figure 10. In all cases, the network size has 
grown to 𝑔 = 21 actors. 

The means and standard deviations among the actor centrality indices 
are presented in Figures 11 through 14. Overlaying the placements of the 
original smaller stylized networks (from Figures 6 through 9) are marks 
for their respective “3𝑔” and “3𝑟𝑒𝑝𝑠” forms. 
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Figure 10.  3𝑔 and 3 𝑟𝑒𝑝𝑠 Networks. 

 
  

Figure 11 shows that for both forms of expansion, 3𝑔 and 3𝑟𝑒𝑝𝑠, and 
for each network, the means and standard deviations are reduced. Figure 
12 shows patterns for closeness centralities that are similarly affected, and 
Figure 13 shows the results for the betweenness centralities with the same 
results—that the 3𝑔  and 3𝑟𝑒𝑝𝑠  networks have means and standard 
deviations that are smaller than the original networks. Figure 14 shows the 
results for the eigenvector centralities in which mean centralities are 
reduced and the standard deviations are roughly stable. 

The expansion of the small (𝑔 = 7) stylized networks to their 3𝑔  or 
3𝑟𝑒𝑝𝑠  counterparts  generally seems to decrease the average centrality 
indices, naturally due to the fact that while the size of the network has 
increased, the numbers of ties has not proportionally done so. Standard 
deviations are reduced for the 3𝑔 networks. Standard deviations are also 
generally reduced for the 3𝑟𝑒𝑝𝑠  networks, although frequently not as 
dramatically, perhaps because the essence of the 3𝑟𝑒𝑝𝑠 networks approach 
is that the local structure is maintained and apparently there are too few 
actors whose roles have been modified to affect the global outcomes.  
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Figure 11. 3𝑔 and 3𝑟𝑒𝑝𝑠 Degree Centralities Normalized: Means and 
Standard Deviations. 
 

 
Figure 12. 3𝑔 and 3𝑟𝑒𝑝𝑠 Closeness Centralities Normalized: Means and 
Standard Deviations. 
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Figure 13. 3𝑔 and 3𝑟𝑒𝑝𝑠 Betweenness Centralities Normalized: Means and 
Standard Deviations. 
 

 
 

Figure 14. 3𝑔 and 3𝑟𝑒𝑝𝑠 Eigenvector Centralities Normalized: Means and 
Standard Deviations. 
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The 3𝑔 and 3𝑟𝑒𝑝𝑠 networks seem to suggest that in networks not much 
larger than the original small networks, distinctions among the empirical 
results across the four centrality indices becomes blurred. Indeed Table 4 
indicates that for the 3𝑔  and 3𝑟𝑒𝑝𝑠  networks, the centrality indices are 
empirically not terribly distinctive. For each network (hierarchy, star, or 
core-periphery) and for each manner of network expansion ( 3𝑔  and 
3 𝑟𝑒𝑝𝑠 ), the correlations indicate minimal distinction among the four 
centrality indices. Specifically, the average correlation for the hierarchy 
network was 𝑟 = 0.934, for the star network, 𝑟 = 0.909, and for the core-
periphery network, 𝑟 = 0.929. These correlations are quite high.  

These investigations have provided information that centrality indices 
may indeed reflect their distinctive theoretical natures, for example, 
degree certainly captures volume, closeness indices were strong overall for 
the clique, and betweenness indices were large for those actors within 
hierarchical structures who hold boundary-spanning roles. Yet in the 
aggregate, the vast overall conclusion is that the four centrality indices are 
at least modestly, and often very highly, correlated.  
 Proponents of one centrality index over another may still make the 
legitimate case for the theoretical and conceptual differences. For 
example, a betweenness index may well identify a set of highly “between” 
actors. However, the strong correlations suggest the essential nature of an 
actor-level centrality index is rather robust, being reflected via any of these 
indices.  The correlations seem to suggest that overall there  will likely be a  
 

Table 4   
Correlations on 3𝑔 and 3𝑟𝑒𝑝𝑠 Network Centrality Indices 
 

  3𝑔 3𝑟𝑒𝑝𝑠 
  degree close betw eigenv degree close betw eigenv 

Hierarchy degree 1.00    1.00    
 closeness 0.95 1.00   0.86 1.00   
 between 0.99 0.92 1.00  0.96 0.87 1.00  
 eigenvect 0.98 0.99 0.96 1.00 0.87 0.98 0.88 1.00 

Star degree 1.00    1.00    
 closeness 1.00 1.00   0.86 1.00   
 between 1.00 1.00 1.00  0.96 0.87 1.00  
 eigenvect 1.00 1.00 1.00 1.00 0.87 0.98 0.88 1.00 

Core- degree 1.00    1.00    
Periphery closeness 1.00 1.00   0.87 1.00   

 between 1.00 1.00 1.00  0.72 0.89 1.00  
 eigenvect 1.00 1.00 1.00 1.00 0.95 0.95 0.77 1.00 

 

great deal of overlap among the sets of actors who are high on degree or 
betweenness or eigenvectors and low on closeness. Thus if one network 
modeler sees an analysis completed by another, and the modelers differ in 
their preferred centrality indices for the research question at hand, each 
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could take some solace in knowing that the conclusions that would be 
drawn would not likely to vary much, from analysis to analysis, across 
centrality index to centrality index. 
 

Study 3: Computing Time 
 

Next, we consider a practical concern. If a battery of centrality indices 
are sufficiently correlated that they provide the network analyst with 
essentially the same information, then a choice among the centrality 
indices may be motivated by a different criterion. For example, with the 
enormous size of many of today’s online networks, it may be prudent to 
select the network indices that are computationally efficient (e.g., fast). 
While today’s large networks may exacerbate such a search, this concern 
for computational efficiencies has existed for some time (cf., Bader & 
Madduri, 2006; Poulin, Boily, & Mâsse, 2000). 

We anticipated and found that the computation of degree centralities is 
the simplest and therefore quickest. For any given network size, the 
calculation of degree centralities requires simply the summations across 
the rows and/or columns of the 𝑔 × 𝑔 matrix, regardless of whether that 
adjacency matrix depicts a hierarchical structure, a star structure, etc. For 
any of these networks, computing times were trivial. As illustrated in 
Figure 15, for multiples of the initial matrices of size 𝑔 = 7  (of 
10, 30, 100, 200, 300, 400, and 500) yielding networks of size 𝑔 of 70, 350, 
700, 1400, 2100, 2800, and 3500, the degrees were solved for in 0.015, 
0.062, 0.171, 0.671, 1.513, 2.652, and 4.166 seconds. That is, even for a 
3500 × 3500 sociomatrix, the degree centralities were obtained in under 5 
seconds. 

The derivation of the eigenvector indices requires factoring a matrix, 
and for increasing matrix sizes, could potentially be computationally time 
consuming. However, once again, even the largest network yielded its 
indices in relatively short amounts of time. Figure 15 shows that for 𝑔 of 
70, 350, 700, 1400, 2100, 2800, and 3500, the eigenvectors were 
computed in 0.015, 0.156, 1.030, 8.565, 28.766, 67.751, and 131.664 
seconds (the latter two values being just over one and two minutes). 

Closeness and betweenness are likely to require more time, given the 
many combinations required to search for geodesics and actors along each 
shortest path. In Figure 15, the closeness times were 0.047, 0.795, 3.666, 
18.829, 55.629, 116.143, and 215.569 seconds (the last value reflects 3.593 
minutes). 

Finally Figure 15 shows the betweenness indices took the longest. The 
combinatorics must be searched to find the geodesics, and then these 
paths re-searched to find the actors that lie upon the paths. The 
computational times quickly exceeded the durations of the other 
centralities: 0.093, 2.121, 10.874, 60.575, 171.803, 378.347, and 696.020 
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seconds (the latter three values translate to 2.863, 6.306, and 11.600 
minutes).  
 
Figure 15. Computational Times. 
 

 
 
Pushing this inquiry of computational efficiency one step further, we 

created a 𝑔 = 10,500  actor matrix, and the degree and eigenvector 
computations still ran, but when attempting to conduct the closeness or 
betweenness centrality calculations, the computer produced an error 
message of “insufficient memory” (on a two-year old Lenovo T420s 
laptop). At the point of 𝑔 = 14,000 actors, degrees were still calculated, but 
trying to derive even the eigenvector centralities gave rise to the 
insufficient memory error. The calculation of degree centralities became 
too demanding when 𝑔  exceeded 16,100  actors. The values for 
computational duration and the number of actors above which a 
calculation cannot be made will naturally vary across computers, and will 
obviously improve with time and enhanced memory capacities. Different 
algorithms can also be more or less efficient (these were programmed in 
Proc IML in SAS).  

Note that even as computational machines get larger and faster, the 
relative speeds even on huge networks will still differ proportionally given 
the calculation requirements inherent to the respective algorithms. That is, 
even if in two years, a 𝑔 = 10 million actor network can be analyzed in two 
minutes, the degree centralities will be the quickest to compute, and 
betweenness centralities will be the slowest. Of course, issues involving the 
relative speed of computation are perhaps not essential for many relatively 
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small applied network questions, but they do seem relevant for inquiries 
into structures in today’s massive online networks. 

 

Discussion 
 
 This research considered several aspects of four key centrality indices: 
degree, closeness, betweenness, and eigenvectors. Study 1 focused on clean 
forms of stylized networks expected to exemplify those conditions under 
which the specific particular sensitivities of the four centralities should be 
most distinct. Depending on the nature and content of the relational ties, 
some centrality indices may be more meaningful or applicable than others. 
For example, if the network connections reflect flows of ties seeking the 
efficiencies of shortest paths, then closeness and betweenness may seem 
optimal given that they are based on geodesics (Borgatti 2005). By 
comparison, degree and eigenvector-based centralities may be better in 
characterizing volumes of ties (Borgatti & Everett, 2005). The profiles of 
the four centralities did indeed show some distinctiveness, at least in 
terms of means and standard deviations. However, the four centralities 
were, on the whole, rather highly correlated. The high correlations suggest 
overall commonality, which in turn suggests the choice of a centrality 
index is not highly critical when characterizing a network. It is not unusual 
in studies of real social network data for centrality indices to be rather 
highly correlated. For example, Rothenberg et al. (1995, p.293) found 
correlations averaging 0.62 to 0.87, and concluded that, “The measures 
appear equivalent, for the most part, although further analysis in other 
contexts may sharpen our insight.”  

We also tested computing times and found that degree centralities 
could be calculated extremely quickly, and eigenvector centralities took 
only a little longer. Given the combinatorics involved in calculating 
closeness and betweenness, they took longer, with betweenness 
computational times in particular rising quickly. 
 The fact that the centrality indices are rather highly correlated may be 
interpreted as good news: it does not abate the conceptual distinctions; 
rather, it suggests that the indices proffer similar information about actors 
in networks. This robustness is reassuring given the many network 
analysts working in application areas who may not appreciate the 
theoretically distinct origins. 
 While we aimed to be fairly inclusive of exemplar network structures, 
future research might consider the extent to which these findings are 
upheld in still more network structures. For example, many real world 
networks are very large and quite sparse in many local regions of the 
network. We expect that our findings (descriptives and moderate to high 
correlations among the four centrality indices) should largely replicate, in 
part because sparse networks by definition contain numerous isolates or 
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actors with relatively few connections. Hence their impact on summary 
statistics is not likely to be extensive. 
 With this research, we hope to have contributed to a deeper 
understanding of four of the most frequently used centrality indices. 
Network modelers can still of course continue to select among indices 
based on conceptual fit, such as focusing on betweenness centralities when 
the purposes of the research is to identify actors within the network who 
serve as interim conduits. That is, we respect and are not negating the 
important conceptual differences between the centralities and what they 
are designed to reflect. Yet the emphasis in our research was on the 
indices’ empirical performance, and our results showed that they were 
generally rather highly correlated. These results might seem counter to 
theoretically-based normative advice about when to use which centrality 
index, yet we interpret the findings as perhaps paradoxically good news in 
that network researchers can be confident that if a network structure has a 
story to tell, in all likelihood, it will be told regardless of the specific 
centrality index implemented for its detection. 
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Appendix: Brief Refresher of Eigenvector Centrality 

To track the nature of the eigenvector centrality on a simple example, consider 

the first table below. It highlights the difference between actor 1 who is only 

connected to actor 2, and actor 2 who has additional direct ties to others. The 

eigenvector scores for each actor appear to the right of the network graph. The 

eigenvector score is highest for actor 2. The degrees, closeness, and betweenness 

centralities (in their normed form) are also provided for comparison. Obviously 

actor 2 is different. 

In the next network, there are 7 actors, wherein actors 2 through 5 are 

connected as previously, but now actor 1 has additional connections. Now the 

eigenvector centrality for actor 1 is higher than it had been, but not quite as high 

as the value for actor 2 who is still tied to more actors. 

  

Example with 𝑔 = 5  Eigenvector For comparison (normed) 

 Actor Centralities Degree Closeness Betweenness 

1 0.354 0.25 0.57 0.00 

2 0.707 1.00 1.00 1.00 

3 0.354 0.25 0.57 0.00 

4 0.354 0.25 0.57 0.00 

5 0.354 0.25 0.57 0.00 

 

 

Example with 𝑔 = 7  Eigenvector For comparison (normed) 

 Actor Centralities Degree Closeness Betweenness 

1 0.500 0.50 0.67 0.60 

2 0.628 0.67 0.75 0.80 

3 0.289 0.17 0.46 0.00 

4 0.289 0.17 0.46 0.00 

5 0.289 0.17 0.46 0.00 

6 0.230 0.17 0.43 0.00 

7 0.230 0.17 0.43 0.00 

1 2 
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6 
1 2 
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