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The purpose of the present paper is to encourage textbook authors, quantitative 
instructors, curriculum writers, and software developers to move away from the use of 
isolated apparently disconnected analyses and instead move towards the use of the 
general linear model as a foundational framework for graduate level statistics training. It 
is argued that an understanding of modeling, simple linear equations, and commonly 
used analogous statistical terms will facilitate students understanding of frequently used 
parametric analyses. Additionally, this holistic approach will equip students with the 
necessary preparatory skills to understand newer analytical approaches. Three heuristic 
examples are provided. 
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Although researchers have clearly demonstrated the linkages among 
parametric analyses within the General Linear Model (GLM) by showing 
that structural equation modeling is the more general case of canonical 
correlation analysis (Bagozzi, Fornell, & Larcker, 1981; Fan, 1997; Graham, 
2008) and that canonical correlation analysis in turn subsumes classical 
statistical analyses (Knapp, 1978; Thompson, 1984), instructional 
practices have not changed appreciably. Typical undergraduate psychology 
introductory statistics course sequences include classical statistical 
analyses (e.g., t-test, ANOVA, regression). These analyses are often 
introduced as isolated analyses unique in name and purpose with little to 
no emphasis on effect sizes, confidence intervals, and GLM approaches 
(Chartier & Faulkner, 2008; Friedrich, Buday, & Kerr, 2000). At the 
doctoral level, topics covered in methodological courses serve to equip 
students with the fundamental competencies necessary to successfully 
engage in and contribute to the field.  Yet there is a limited amount of 
methodological training (Mdn = 1.6 years; Aiken, West, & Millsap, 2008) 
required in doctoral curricula, so authors of statistics texts, 
methodological instructors, and course designers would be wise to focus 
on general foundational frameworks which maximize students ability to 
transfer their learning experiences to new analytical situations. Further by 
explicitly recognizing the unifying structure that underlies all parametric 
analyses, a strong advanced organizer for students to more powerfully 
internalize that parametric analyses are not individual disconnected 
analyses can be promoted.  
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Indeed, instead of teaching discrete univariate (e.g., t-test, ANOVA, 
correlation, and regression) and multivariate examples (e.g., discriminant 
analysis, MANOVA, principal components analysis, canonical correlation 
analysis, and structural equation modeling) of commonly used parametric 
statistics, instructors could instead focus on the fact that these analyses 
have a common framework.  This framework, at its simplest, is a 
mathematical procedure that results in the creation of a composite 
variable. The composite variable scores are calculated as a linear function 
of one or more observed variables. The estimation of the composite scores 
is maximized by the use of weights applied to the observed variable(s). The 
quality of the model is contingent upon the extent to which the calculated 
composite variable accurately represents the observed outcome variable of 
interest.  A variance accounted for effect size, such as R2, quantifies the 
extent to which the observed variables are able to explain or predict the 
variability observed in the outcome variable of interest.  Axiomatically, 
effect sizes such as R2 provide an estimate of model fit.  

In positing that the understanding of GLM would facilitate the 
acquisition of fundamental methodological competencies, it is important 
to first consider the purpose of doctoral training in statistics. Do all 
doctoral students in psychology really need to be prepared to engage in 
and contribute to the field? After all, fundamental competencies for future 
quantitative psychologists are inherently different from those of future 
clinicians. Or are they? Could it be that a firm foundation in the basic 
principles of the GLM is the springboard from which sound statistical 
reasoning could emerge?  According to Wilks (1951), H. G. Wells claimed 
that “statistical thinking will one day be as necessary for efficient 
citizenship as the ability to read and write” (p. 40). In our present 
information satiated society, it seems that the future that Wells envisioned 
has become a reality. Certainly then, sound statistical reasoning is a 
realistic expectation of doctoral students.  Commentary by Aiken, West, 
and Millsap (2009) regarding quantitative training, contended that “the 
same solid foundation [in methodology] will also serve the acquisition 
later in life of diverse methodologies needed to support basic as well as 
applied research in a wide range of work settings” (Aiken, West, & Millsap, 
2009, p. 52).  Although Aiken et al. were not specifically referring to the 
GLM, the purpose of the present paper does argue that the GLM could and 
should serve as a foundational framework in graduate level statistics 
courses.  

 
Quantitative Training in Psychology 

 
Aiken, West, & Millsap (2009) relay the necessity of sound quantitative 

and methodological training noting that “[a] Ph.D. psychologist should be 
able to evaluate and generate new scientific knowledge in psychology”     
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(p. 51). Similarly, Rossen and Oakland (2008) noted that “graduate 
preparation in research methods is needed to help ensure that the next 
generation of psychologists is prepared to consume and engage in 
research” (p. 42). Espousing such a position about quantitative and 
methodological training, it follows that poor training negatively impacts 
“the progress of substantive areas” (Aiken, West, Sechrest, & Reno, 1990, 
p. 731). As such, quantitative training becomes everyone’s concern.  

An understanding of the topical coverage and amount of time allotted 
to quantitative training can provide an indication of the quality of training 
received. In Rossen and Oakland’s (2008) survey of graduate professional 
programs, specifically APA accredited programs, the authors provided that 
96% of the responding programs required an introduction to statistics 
(Rossen & Oakland, 2008), which is similar to Aiken, West, and Millsap’s 
(2008) estimates from their survey of  Ph.D. programs in psychology 
across the United States and Canada. Nonetheless, researchers have noted 
the limited time (Mdn = 1.6 years) devoted to quantitative training in 
Ph.D. programs in psychology (Aiken, West, & Millsap, 2008).  

Perhaps even more telling than the number of years spent in 
quantitative training is the content of the courses. The introductory 
quantitative course sequence was found to be primarily centered on 
ANOVA although an increased focus on regression was noted (Aiken, 
West, & Millsap, 2008). This content appears to mirror the generally 
downward trend in the use of ANOVA and generally upward trend in the 
use of regression in psychology journals from 1948-2001 (Skidmore & 
Thompson, 2010). Indeed, Silverman (1987) has noted that “journals both 
create and mirror their fields” (p.40). Apparently quantitative and 
methodological training is reflected in the field as well.  

Other researchers examined psychotherapy related fields and the 
impact of graduate students’ research training environment (RTE). 
Posited to exist in the RTE are 10 components within two higher order 
factors (interpersonal and instructional) thought to influence research 
attitudes, efficacy, and productivity (Gelso, Baumann, Chui, & Savela, 
2013).  Of these 10 components, the instructional factor component, 
focused on effective and relevant statistics instruction, is particularly 
relevant to the present discussion. Gelso (2006) noted that students’ first 
experiences with research, often in introductory statistics courses, could 
be “psychonoxious” (p. 8). Although GLM was not specifically considered, 
Gelso (2006) noted “Statistics courses that are insensitively and 
ineffectively taught can traumatize students and deeply affect research 
interest. The most influential RTEs actively seek to assure that 
quantitative instruction fits the level and needs of budding applied 
researchers” (p. 13).  An explicit framework, such as GLM, that undergirds 
other more complex analyses could offer a useful scaffold for developing 
researchers.   
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Another approach in understanding the content coverage in 
introductory graduate level statistics courses is to examine the course 
descriptions for those introductory courses. The office of the University 
Registrar at Stanford University notes that course descriptions are “about 
the subject matter, approach, breadth, and applicability of the course” and 
notes that “students need to be able to tell prospective universities and 
employers what the course was about in a short, content-filled way” (n. a., 
2014).  Admittedly, course descriptions are succinct typically but they do 
offer a glimpse into the course content.  Further, unlike surveys where 
individuals are responsible for reporting what courses are about, course 
descriptions are a symbol of the institutionalized expectations regarding 
the course. In addition, course descriptions are publicly available and can 
be tied directly to specific degree plans, which are also publicly available. 

Using the Carnegie Classification system, 4-year or above public 
universities classified as having very high research activity were identified. 
Degree plans in psychology programs in each of the universities were 
located. Degree plans were searched for the lowest level quantitative 
course on the degree plan. Displayed in Table 1 are the results of the 
content analysis of the course descriptions. 

The most salient descriptor in introductory graduate level statistics 
courses was hypothesis testing (54.8%), variously described as hypothesis 
testing, significance tests, tests of significance, etc. The next most salient 
descriptor, noted in almost half of the course descriptions, was ANOVA. 
Present in roughly equal proportions was experimental design (28.8%), 
and analysis, statistical software, and regression, with 27.4% each.  The 
general linear model was noted in only six courses.  

 
Foundational Knowledge 

 
Given that (a) a limited amount of time is available in the curriculum 

for quantitative training (Aiken, West, & Millsap, 2008), (b) parametric 
analyses subsumed under the GLM such as ANOVA, correlation, 
regression, are the most commonly used analyses (Skidmore & Thompson, 
2010), and (c) these classical methods are “still best for many questions, 
and … are the basis for the newer approaches” (Wickens, 2004, p.1) then it 
only makes sense to provide students with a strong foundational structure 
in the GLM within the introductory course sequence.   

Because several of the courses reviewed in the present study noted 
GLM in the course description, a search for syllabi for those courses 
ostensibly provides more details about what a course structured with GLM 
principles in mind might look like. Of the six courses that included the 
GLM in the course description only one provided an accessible syllabus 
online.    The course, Statistical  Methods in  Psychological   Research, was  
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Table 1 
Frequencies and Percentages of Descriptors Used in Course Descriptions 
for Introductory Level Graduate Statistics Courses 

Descriptor  Count  % 

Hypothesis testing  40 54.8 

ANOVA  35 47.9 

Experimental design  21 28.8 

Analysis  20 27.4 

Statistical software  20 27.4 

Regression  20 27.4 

Correlation  16 21.9 

Interpretation and presentation   13 17.8 

Center, shape, spread  11 15.1 

Nonparametric techniques  11 15.1 

Description  10 13.7 

t-test  7 9.6 

Interval estimation  7 9.6 

General Linear Model  6 8.2 

Data exploration techniques  4 5.5 

Effect sizes  3 4.1 

Note.  Programs included clinical, counseling, developmental, educational, 
quantitative, school, and social psychology.  
 
taught by Professor Aurelio José Figueredo from the University of Arizona.  
Figueredo (2011) noted the following as the goal of the course: 

 
to develop the requisite level of critical thinking and philosophical 
background for conducting valid quantitative research rather than a 
"cookbook" familiarity with traditional statistical procedures.  This 
involves a conceptual understanding of the underlying philosophical basis of 
empirical science as well as of the mathematical foundations and 
interrelationships of the major statistical models now available 
[bolding added] p.1. 

 
The emphasis on critical thinking in contrast to surface procedural 

knowledge of isolated statistical techniques is key to providing a 
foundation for sound statistical reasoning.  An integrated approach is the 
opposite of the historical approach, where statistical techniques were 
taught in isolation. Graham commented on the dangers of this 
disconnected method, stating that when “taught in this manner, 
procedures can seem overly complex and intimidating to students, who 
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lack an overall framework” (Graham, 2008, p. 486). Students equipped 
with general principles of modeling will have a much easier time 
understanding and thoughtfully using not only the classical approaches 
but the newer approaches as well. 
 
Emphasis on Modeling  
 

As a way to scaffold students’ understanding of statistical models, 
instructors can begin to probe students’ understandings and 
misunderstandings of modeling in general. One important way modeling 
can be conceptualized is as a representation of reality. A model, however, 
is not reality. It is often a much simplified version of reality. A model 
therefore, is always incomplete. Box and Draper’s words (1987), “all 
models are wrong; the practical question is how wrong do they have to be 
to not be useful,” offer a valuable perspective (p. 74).  

The black box experiment is a useful tool to help students tangibly 
understand the modeling process. The black box is literally a rectangular 
black box with an opening at the top of the box and an opening at the 
bottom. Students are provided with a graduated cylinder and a container 
of water. Students are instructed to pour water into the top opening and 
observe what happens. They are not allowed to open the box or to move it 
in any way. Students record the amount of water put into the top of the 
black box and the amount that comes out. The box is designed to where 
sometimes a large amount of water is put in, and none comes out. 
Sometimes a small amount of water is put in and a large amount of water 
comes out. Students often assume that when they begin the experiment, 
the box is empty, which may or may not be a correct assumption. After 
several rounds of data collection and discussion with peers, students are 
asked to sketch a model of what mechanism might be inside the box that 
produced the observed results. Students present and critique each other’s 
models, noting the utility of each model, and its limitations. The black box 
experiment has been used in science classrooms and in the professional 
development of science instructors (Ruebush, Sulikowski, & North, 2009; 
Ruebush, Grossman, Miller, North, Schielack, & Simanek, 2010). A rubric 
is available to qualify students understanding of models (c.f. Ruebush et. 
al, 2010).  

This activity is a tangible way to discuss foundational terms such as, 
systematic data collection, validity, reliability, and the presence of multiple 
plausible models. Another strength of this approach is the fact that 
students will never know what mechanism is within the black box. Because 
the mechanism is never revealed to them, fruitful discussions unfold about 
the inability to know the true mechanism with certainty even if they 
believe their models is plausible. As a result, students can begin to shift 
their thinking from proving their model is correct to providing sufficient 
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evidence in support of their conclusions, while recognizing the necessity to 
acknowledge and test alternative plausible models. 

 
A Simple Heuristic Example 
 

After helping students more clearly understand the concept of 
modeling, discussions about mathematical models, and more specifically 
linear models, can be approached with examples. A simple heuristic 
example that can be used is to develop a model to understand doctoral 
students’ height.  The purpose of this model is to (a) demonstrate explicitly 
a simple mathematical model and (b) help students explicitly understand 
terms such as, observed variables, unobserved variables, y, y-hat, error, 
and weights as well as the basic notation for a linear equation.   

To introduce these topics, students are told that their task is to develop 
a model to estimate doctoral students’ height.  Each of them is asked to 
provide their height.  Next, students are asked if there is something that 
could be used to help predict or estimate other doctoral students’ height.  
Undoubtedly someone will respond that the average height would be a fair 
estimate.  This of course allows for multiple “What if?” discussions. What 
if a really tall (or short) person is in class, would the average still be the 
best estimate?  

Using a spreadsheet a graphical plot of the points the students 
provided is drawn.  See Figure 1.  The simple mathematical model with no 
predictors, yi = β0 + εi, or more simply, Y = intercept + error is introduced.  
The intercept (β0), in this simple case of no predictors is equivalent to the 
mean height of the sample.  This also provides the opportunity to contrast 
Y-hat (predicted Y) and Y (observed Y).  To demonstrate that the mean 
height, or predicted height, is the true mathematical center of the data 
points (i.e., the sum of the error column equals zero), other values 
different from the mean are subtracted from Y and result in greater error.  
Therefore, with no other information to predict height, the mean height, 
on average, minimizes prediction error.  To understand how to calculate 
the degree of error in the predicted height for the sample, the sum of the 
squared deviations from the mean (SOS) is calculated by summing the 
fifth column.  From this SOS, calculations for the variance (i.e., dividing 
the SOS by n -1) and standard deviation (i.e., taking the square root of the 
variance) are demonstrated.  

Next students are encouraged to consider ways to improve the previous 
model so that a more accurate predicted height could be obtained.  More 
information, in the form of another variable, is introduced by asking 
students to provide their shoe size for input into the spreadsheet.  See 
Table 2 and Figure 2.  The scatterplot populates as each student’s values 
are entered.   
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Figure 1. Heuristic example of a model with no predictors. 

Student  

Height 

(Y) 

Predicted 

Height 

(Y-hat) 

Height - 

Predicted Height 

(Error) 

(Height- Predicted 

Height)
2
 

1 65.5 65.5 0.0 0.0 

2 64.0 65.5 -1.5 2.3 

3 62.0 65.5 -3.5 12.3 

4 66.5 65.5 1.0 1.0 

5 66.0 65.5 0.5 0.3 

6 67.0 65.5 1.5 2.3 

7 68.0 65.5 2.5 6.3 

8 63.5 65.5 -2.0 4.0 

9 64.0 65.5 -1.5 2.3 

10 65.0 65.5 -0.5 0.3 

11 65.0 65.5 -0.5 0.3 

12 67.5 65.5 2.0 4.0 

13 63.0 65.5 -2.5 6.3 

14 67.5 65.5 2.0 4.0 

15 68.0 65.5 2.5 6.3 
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Table 2  
Heuristic Example of a Model with a Single Predictor 
Student Shoe 

Size  
(X) 

(Shoe Size - 
Mean Shoe 

Size), 
Deviation 

X 

(Shoe Size - 
Mean Shoe 

Size)2, 
Squared 

Deviation X 

Height  
(Y) 

(Height - 
Mean 

Height), 
Deviation Y 

(Height - 
Mean 

Height)2, 
Squared 

Deviation Y 

Deviation 
Products 

Predicted 
Height 
(Y-hat) 

Height - 
Predicted 

Height 
(Error) 

1 9.5 0.3 0.1 65.5 0.0 0.0 0.0 65.7 -0.2 

2 7.5 -1.7 2.9 64.0 -1.5 2.3 2.6 64.2 -0.2 

3 6.5 -2.7 7.3 62.0 -3.5 12.3 9.5 63.4 -1.4 

4 10.0 0.8 0.6 66.5 1.0 1.0 0.8 66.1 0.4 

5 8.0 -1.2 1.4 66.0 0.5 0.3 -0.6 64.6 1.4 

6 10.0 0.8 0.6 67.0 1.5 2.3 1.2 66.1 0.9 

7 13.0 3.8 14.4 68.0 2.5 6.3 9.5 68.4 -0.4 

8 7.0 -2.2 4.8 63.5 -2.0 4.0 4.4 63.8 -0.3 

9 6.5 -2.7 7.3 64.0 -1.5 2.3 4.1 63.4 0.6 

10 11.0 1.8 3.2 65.0 -0.5 0.3 -0.9 66.9 -1.9 

11 8.5 -0.7 0.5 65.0 -0.5 0.3 0.4 65.0 0.0 

12 10.5 1.3 1.7 67.5 2.0 4.0 2.6 66.5 1.0 

13 6.0 -3.2 10.2 63.0 -2.5 6.3 8.0 63.1 -0.1 

14 11.5 2.3 5.3 67.5 2.0 4.0 4.6 67.2 0.3 

15 12.5 3.3 10.9 68.0 2.5 6.3 8.3 68.0 0.0 
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Next the process of subtracting the variable from the mean, taking the 
deviation, and squaring the deviation is repeated for Shoe Size (X) and 
Height (Y).  Whereas before the predicted height was constant, the 
predicted height is variable now. Guided questioning helps students 
recognize that the variability in the prediction is attributed to the 
weighting value, or β1 in the equation, yi = β0 + β1x1 + εi.  Students can 
calculate this weight using the equation, weight of X = sum of the 
deviation products/ sum of squared deviations of X.  They calculate the 
intercept by using the equation, intercept = mean of Y – weight*mean of 
X. The equation for predicted Y or Y-hat (i.e., the best fit line) is given as 
the sum of the intercept and the weight multiplied by X. Comparisons to 
the no predictor model help students see that by adding the variable shoe 
size, prediction was improved.  
 
Figure 2. Heuristic example of a model with a single predictor. 
 

 
 
 

A series of probing questions can help students more thoughtfully 
consider this linear model. Students can be asked to explain what a perfect 
model of the relationship between height and shoe size would look like.  
Another question for consideration is what a useless model of the 
relationship between height and shoe size would look like.  Further, 
criteria used to assess the “goodness” of a model can be explored.  
Although this process may take some time, it is a worthwhile investment.  
If students can begin to understand the simplest of linear models, we can 
move then from these simple models to more complex models.  
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Another Heuristic Example 
 

The next heuristic example also involves a spreadsheet. In this example 
students visualize SOS between, SOS within, SOS total, and the variance 
accounted for effect size, R2.  Depicted in Figure 3 are 120 squares, 96 of 
which are shaded. The shaded squares represented the between, or 
explained, SOS.  The unshaded squares represent the within, or 
unexplained, SOS. Students are asked to find the SOS total by summing 
the SOS between and SOS within. Next, students are asked to find the 
proportion of SOS between out of the total SOS. Students then are 
prompted to understand that this proportion is the proportion of known 
variability. Put another way, this is the variance that is accounted for and 
is known as R2. Multiple variables can be easily introduced into this visual. 
The use of multiple variables facilitates discussions about structure 
coefficients, and standardized and unstandardized coefficients.    

 
Figure 3. Heuristic example for discussing SOS between, SOS within, SOS 
total, and the variance accounted for effect size, R2. 

 
 
A Final Example Using Software 
 
 Although the previous examples provided an opportunity to visualize 
the GLM, students likely will not use a worksheet to analyze their data 
routinely. Instead, students will be using statistical software to run their 
analyses. In these programs, analyses are referenced typically with 
traditional names (i.e., regression, ANOVA, etc.). As students become 
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accustomed to the software and to the nomenclature used within the 
software, it becomes all too easy to consider each analysis as a discrete 
element. Therefore, it is especially important to make explicit the 
connections to the GLM as observed in the output of statistical programs.  

For this example, a dichotomous variable, gender, is added to the data 
set.  To make explicit the connections to the GLM, a separate correlation, 
t-test, ANOVA, and simple regression is run, using gender and height.  
Provided in Figure 4 on the left is the regression output provided in 
SPSS®.  With the printed correlation, t-test, and ANOVA output on hand, 
it is easy to demonstrate how the exact same results provided in the 
separate analyses (i.e., correlation, t-test, and ANOVA) is present in the 
regression output.  On the left side of Figure 4, the correlation output is 
displayed in the first two tables in the regression output.  The point-
biserial correlation between gender and height is statistically significant, r 
= .649, r2 = .421, p = .004.  The difference between the correlation output 
p value  (p = .004) and that given in the regression output (p = .009; final 
table in the regression output) is due to the default one-tailed test 
provided in the correlation output, and the default two-tailed test provided 
in the regression output.  Further, it is clear that because this is a simple 
regression with a single predictor, R = r, as provided in the Model 
Summary output (R = .649).  Next, the ANOVA table (fifth table in the 
regression output) is examined and the square root of the F value is 
compared to the t statistic provided in the printed t-test output.  It is of 
course identical, with an identical p value.  Within the regression output 
the constant is 64.375, which is the intercept or the mean for the gender 
type coded as 0.  By adding the b weight (2.411) given in the row titled 
“gender” to the constant (64.375), the resulting mean for the gender coded 
as 1 can be computed. 

On the right side of Figure 4 is provided the output using the 
Univariate General Linear Model syntax.  The mean of the men and 
women is provided in the descriptives as well as in the Parameter 
Estimates table.  Here the intercept represents the gender coded as 1, 
because it has a b weight of 0; to get the gender coded as 0, you must 
subtract 2.411 from the intercept (66.786-2.411 = 64.375).  The ANOVA 
table on the right side is labeled the “Tests of Between-Subject Effects”.  
Indeed, it is easy to see that the same information provided in a traditional 
ANOVA table, (e.g., R, R2, F, SOS, df), is provided in the “Tests of 
Between-Subject Effects”. 
 Turning now to UnimultTM, the output is provided in Figure 5.  The 
same necessary information provided in SPSS® is provided in UnimultTM.  
The r, equivalent to R in simple regression, and therefore the r2 (and R2) 
can be calculated (.652 = .42).  The F ratio is also provided, and therefore, 
the t can be calculated by taking the square root of the F.  The mean of the 
men  (66.79)  and  the  women  (64.38)  and  the  grand  mean  (65.50)  is 
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Figure 4.  Regression and Univariate General Linear Model Output Comparisons in SPSS® 
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provided explicitly.  Further, confidence intervals for the mean heights and 
r are also  provided.  Perhaps more importantly,  the output is  explicit and 
consistent across univariate and multivariate analyses, facilitating 
students understanding that a general framework undergirds these 
analyses.  
 
Figure 5.  Regression and Univariate General Linear Model Output 
Comparison in UnimultTM 

 
 
 As these examples demonstrate, software developers have begun to 
incorporate GLM terminology.  The commonly used statistical program, 
SPSS®, has incorporated the GLM language, offering users the ability to 
use GLM options of Univariate, Multivariate, and Repeated Measures.  
Still, the legacy menu options are available should users wish to use 
traditional language instead (e.g. Correlate, Regression, t-test and 
ANOVA). The other statistical program discussed, UnimultTM, was 
“designed and programmed from the first to the last line of code as a GLM 
processor”, and as such, is explicitly focused on the analysis of univariate 
and multivariate data within the GLM framework. Further, users do not 
need to know the names of the individual analyses in order to run an 
analysis.  Instead, users simply need to know which are the independent 
and dependent variables and the measurement scale of each. Regardless of 
the software used, it is critical that instructors point out the connections 
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among analyses subsumed within the GLM.  Again, the focus is on the 
components of the GLM—the weights applied to observed variables that 
result in a latent variable and the variance accounted for effect sizes that 
provide an estimate of model fit. 

 
 

Discussion 
 

The preceding three examples explain the basic principles within the 
GLM that can be reiterated across analyses within the GLM; (a) all these 
analyses apply weights to measured (observed) variables in such a way 
that error variance is minimized, (b) latent (unobserved) variables result, 
and (c) variance accounted for effect sizes analogous to r2 can be calculated 
(Thompson, 2006).  Instructors who help students recognize standardized 
and unstandardized weights, observed and latent variables, and variance 
accounted for effect sizes, equip students with a framework within which 
to build other analyses upon.  A clear understanding of these terms 
becomes more valuable as students see analogous terms in other GLM 
analysis. It is helpful if these analogous terms are made explicit. Because 
traditional approaches, with their respective nomenclature, are prevalent, 
a GLM term crosswalk, provided in Table 3, is often helpful.  For example,  

 
Table 3 
Analogous Terms across Four GLM Analyses 

 
Regression 

 
Factor analysis 

Descriptive 
discriminant 
analysis 

Canonical 
correlation 
analysis 

Beta weights 
 

Pattern coefficients 
 

Standardized 
canonical 
discriminant 
function 
coefficients 
 

Standardized 
canonical 
coefficients 
 

Structure 
coefficients 

Structure 
coefficients 

Structure      
matrix 
 

Canonical 
structure 
coefficients 
 

Equation 
 

Factor 
 

Function 
 

Function 
 

Y-hat Factor scores Discriminant 
scores 

Canonical 
function scores 
 

R2 h2 Rc
2 Rc

2 
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students can begin to understand that R2 in regression is analogous to the 
communality coefficient, h2, in factor analysis, and Rc

2 in descriptive 
discriminant analysis, and canonical correlation analysis.  Moreover, 
taking a unified approach to understanding statistics can also help 
students recognize a similar interpretation strategy across the GLM, i.e., 
Do I have anything?  And, Where does my something originate?  (cf., 
Thompson, 2006).  

Kirk’s (2001) multifaceted approach to promoting sound statistical 
practices included a call to action from multiple sources such as textbook 
authors, quantitative instructors, curriculum writers, software developers, 
journal editors, and authors of publication manuals. Although the focus of 
the present paper is on teaching, a multifaceted approach is also called for. 
As has been noted, the statistical training of future psychologist impacts 
the field. Textbook authors can assist instructors by providing textbooks 
and resources that focus on the GLM. Software developers can continue to 
move towards a more integrated approach to statistical analyses within 
GLM.  Journal editors can encourage a more unified approach to analyses 
instead of clear delineations between a t-test and an ANOVA, for example. 
And authors of publication manuals can emphasize the GLM in their 
representative tables, figures, and text. Simply because analyses were 
developed from different disciplines at different times, it is not necessary 
to continue to treat them as separate entities.  
 
 

Author notes:  An earlier draft of this manuscript, “Teaching GLM 
Concepts: Explicating the Connections”, was presented at the American 
Psychological Association 2014 Annual Meeting, Washington, D. C.  
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