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Growth curve analysis provides important informational benefits regarding intervention 
outcomes over time. Rarely, however, should outcome trajectories be assumed to be 
linear. Instead, both the shape and the slope of the growth curve can be estimated. Non-
linear growth curves are usually modeled by including either higher-order time variables 
or orthogonal polynomial contrast codes. Each has limitations (multicollinearity with the 
first, a lack of coefficient interpretability with the second, and a loss of degrees of freedom 
with both) and neither encourages direct testing of alternative hypothesized curve shapes. 
Especially in studies with relatively small samples it is likely to be useful to preserve as 
much information as possible at the individual level. This article presents a step-by-step 
example of the use and testing of hypothesized curve shapes in the estimation of growth 
curves using hierarchical linear modeling for a small intervention study. 
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It is often the case that the success of an intervention is judged by its 
outcomes either at the end of the intervention or at some follow-up time 
period. Although that approach focuses the determination of effectiveness 
on a key point in time for the intervention under study, it provides no 
information on how patients1 arrived at that point. For example, did 
patients improve at a constant rate over the entire period, did they achieve 
their end point levels quickly and then remain there for the rest of the 
study period, or did the impact of the intervention need to accumulate for 
most of the treatment period before any change in outcomes was seen? If 
the study has a follow-up period, did patients remain at their end-of-
treatment levels, did they go on to improve beyond them, or did they begin 
to regress? Such information is essential to the determination of optimal 
treatment frequency and duration for practice and future research. 

If outcome measures are available over 3 or more time points, a growth 
curve analysis is the logical approach to answer these questions. Instead of 
comparing only end points between groups, the “growth curves” (the 
trajectory of change in outcomes over time) of participants in each group 
can be compared over the full-study data collection period.  

                                                 
1 In the context of the study to be presented, “patients” is an appropriate term (Kihlstrom, 2005), 

but the methodology to be described is relevant to subjects of any sort when studied over time. 
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Growth curve analyses can be performed as a special case of 
hierarchical linear modeling (HLM, also known as multilevel models, 
random-coefficients models, random-effects models, mixed models, and 
seemingly unrelated regression (Heo et al., 2003; Raudenbush & Bryk, 
2002; Singer, 1998)). HLM is appropriate for growth curve analyses 
because there are at least two hierarchical levels of analysis: within 
participant (changes across time for each participant) and across 
participants (changes to each participant’s growth curve intercept and 
slopes due to covariates). Growth curve analysis via HLM offers a number 
of statistical benefits in addition to the informational benefits mentioned 
above. For example, it corrects for the error structure violations that would 
be caused by performing an analysis of all data points using ordinary least 
squares (OLS) regression (i.e., observations over time for one individual 
cannot be assumed to be independent) (Feldman, 1988; Heo et al., 2003). 
HLM also allows for unbalanced designs (having a different number of 
observations in each group is troublesome to methods such as repeated 
measures ANOVA (O'Connell & McCoach, 2004) and two-step OLS 
methods (Heo et al., 2003)), and because it uses all information available 
in the dataset, it optimizes estimation in the presence of missing data 
(O'Connell & McCoach, 2004; Raudenbush & Bryk, 2002). This last 
benefit is especially important as missing data are common in studies in 
which repeated measurements are made over time on each subject. 

If growth curve analysis is the method of choice, it still remains to 
decide how to model the shape of the curve over the intervention period 
and any change in shape during follow-up. Because higher-order (e.g., 
quadratic, cubic) time variables are highly correlated with each other and 
with the linear time variable, orthogonal polynomial contrast coding is 
often used to capture non-linearity in individual growth curves (see for 
example (Kurdek, 1999). However, Biesanz et al. argue against orthogonal 
polynomial contrasts in favor of the use of “regular” polynomial coding on 
the basis of interpretability (Biesanz, Deeb-Sossa, Papadakis, Bollen, & 
Curran, 2004). In either case, if the number of data points available over 
time is limited (and especially if missing data are a problem), the degrees 
of freedom cost of the additional time variables may restrict the curve 
shapes possible.  

Finally, neither HLM nor polynomial coding promotes the hypothesis 
and testing of theory-derived curve shapes. The use of theory in evaluation 
not only guides and strengthens research design, it also provides a context 
for the interpretation of results (Lipsey, 1990). Although both statistical 
approaches allow testing whether the curve has one or more “bends,” 
neither specifies the alternatives considered theoretically feasible, thus 
giving all shapes equal credence.  

The study reported here uses data from a randomized controlled trial 
for back pain to present an example of growth curve analysis using a third 
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alternative: direct comparison of hypothesized, directly-coded growth 
curve shapes. This approach avoids multicollinearity between time 
variables, maintains coefficient interpretability, minimizes the loss of 
degrees of freedom, and formalizes the use of theory in the determination 
of growth curve shape. 

 
Method 

 
Sample  
 

The data used in this example are from a 2005 worksite study of 
alternative care for low back pain. This dataset has a number of qualities 
that make it a good example for this approach. It is a small sample (70 
participants in total with 39 randomized to the treatment group and 31 to 
control) with up to five data points for each participant, and these five data 
points cover two periods expected to have different outcome trajectories. 
The first four cover monthly measurements from baseline to end of the 3-
month treatment period, and the last is the end point of a 3-month follow-
up period. In addition, as an incentive for retention, each participant in 
the control group was offered the opportunity to receive one month of 
treatment at the end of the intervention period. There were 13 participants 
in this “crossover” group. Finally, there are missing data, assumed to be 
missing at random. A complete dataset would contain 350 data points (70 
times five). This dataset contains 314 data points for the 70 participants. 
Most missing data occurred for the month 3 and month 6 data points   

 
Outcomes  
 

Three outcomes were measured in this study: the Roland Disability 
Questionnaire (RDQ) (Roland & Morris, 1983), the Oswestry Disability 
Index (ODI) (Fairbank, Couper, Davies, & O'Brien, 1980), and a pain 
visual analog scale (VAS) (Huskisson, 1982). More detail on the original 
study and its intervention and results can be found in Szczurko et al. 2007. 
The main outcome used in this example is the RDQ. Robustness checks of 
the RDQ growth curve model estimates are performed using the ODI and 
the pain VAS.  

 
Statistical Analysis  
 

Four basic shapes (shown in Figure 1) are hypothesized as plausible to 
represent the dominant growth curve shape experienced by participants 
during the 3-month intervention period. These four shapes are based on 
common healing trajectories seen in practice: steady linear growth (steady 
change—i.e., either constant improvement or worsening of symptoms over 
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time), asymptotic growth (rapid change tapering off over time as some 
ceiling or floor is reached), delayed growth (slow change at first, then 
rapid change—possibly due to the need for the intervention effects to 
accumulate to some threshold before change is seen), and relapsed growth 
(rapid change followed by a return toward baseline levels—often seen in 
intractable conditions where hope or novelty will cause a temporary, but 
unsustainable change in reported outcomes). The curves in Figure 1 are all 
drawn showing an initial increase from baseline. Since a reduction from 
baseline constitutes an improvement in the outcomes measured in this 
study, a negative coefficient is expected for the shape (time) variable for 
both groups. It is important to note that other possible growth trajectories 
were excluded as not plausible (assuming effectiveness of treatment). For 
example, we did not expect to find an inverted form of the relapse 
function, i.e., getting worse initially, followed by improvement (the 
“bottoming out” function). We did not expect to find delayed worsening. 
In this study, we were looking for the likelihood of specific expected 
trajectories of change. 

 
Figure 1. Hypothesized growth curve shapes during the 3-month intervention 

period 
 

 
 



HYPOTHESIZED CURVE SHAPES IN GROWTH CURVE ANALYSIS 

17 
 

The hypothesized shapes are coded into four versions of the time 
variable as shown in Table 1. The baseline value for time in each case is 
coded as zero to allow for the intercept to have a meaningful 
interpretation—as the grand mean of baseline outcome values (Biesanz et 
al., 2004; Mehta & West, 2000; Singer, 1998). For the same reason all 
explanatory variables (other than group designation) are centered at their 
grand mean values. Because of the multitude of different combinations 
possible between the shape of the study period curve and the follow-up 
period curve (e.g., return to baseline, remain constant at the end-of-
intervention value, continue along the same trend as shown during the 
intervention period, etc.), a separate time variable is used for the 3-month 
follow-up period are shown in Table 1 (Raudenbush & Bryk, 2002; West, 
Wu, & Ryu, 2006). We expected that participant outcomes for the 
treatment and non-crossover control group would remain at their 3-month 
end-of-intervention values during the follow-up period—thus, 3-month 
and 6-month values for the time variable for each shape are the same. The 
significance of the follow-up time variable will test that hypothesis.  

 
Table 1 

Coding for the Four Hypothesized Shapes for the Intervention Period Time 

Variable and for the Follow-up Period Time Variable 

Shape Baseline 1 Month 2 Months 3 Months 6 Months 

Linear 0 1 2 3 3 

Asymptotic 0 2 3 3 3 

Delayed 0 0 1 3 3 

Relapsed 0 1 2 1 1 

Follow-up 0 0 0 0 1 

 
The models are estimated using hierarchical linear modeling (HLM) 

allowing the intercept and two slopes (one for each time variable) to have 
both fixed (group mean) and random (participant-specific) effects. The 
unconditional models (models without inter-individual predictor 
variables) are first estimated for each of the four possible time (curve 
shape) variables. Unconditional models estimate the grand mean intercept 
and grand mean intervention and follow-up period slopes for the whole 
sample, as well as the variance and covariance across participants of these 
estimates. A growth curve analysis typically begins with the fitting of an 
unconditional model as it provides baseline statistics and useful empirical 
evidence for proper model specification (Raudenbush & Bryk, 2002). The 
Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC) fit statistics are compared across models to determine which growth 
curve shape best fit the sample as a whole and each group. Both fit 
statistics are based on the log likelihood, are in the form of “smaller is 
better,” and penalize the log likelihood for the number of parameters 
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estimated (Raudenbush & Bryk, 2002; Singer, 1998). If the difference 
between BIC statistics for two models is greater than 10, that can be 
considered “very strong evidence” that the model with the lower BIC is a 
better fit to the data (Raftery, 1995). 

Once the best growth curve shape was determined, the variables 
indicating the treatment group status and the portion of the control group 
who elected to receive treatment after the intervention period ended (the 
crossover group) were added. This conditional model allows treatment and 
crossover group status to affect the intercept and both time variable 
slopes. After interpretation of these results, participant characteristic 
covariates were added as needed. Available participant characteristic 
variables were age, sex, whether the participant entered the study with co-
morbid conditions (yes=1; no=0), job position and shift (day, afternoon, or 
night shift warehouse worker, delivery person, truck driver, or sales 
representative with day shift as the reference), and the total number per 
week of visits to other practitioners for adjunctive back pain care during 
each period. Nested models were compared using a χ2 test calculated as -2 
times the difference between the log likelihood of the nested model and 
the log likelihood of the more inclusive model(Raudenbush & Bryk, 2002; 
Singer, 1998). The degrees of freedom for this test are equal to the number 
of variables in the more inclusive model minus the number in the nested 
(restricted) model. The results of the chosen (“best”) growth curve model 
were compared to the results of an end-point analysis focusing only on 3-
month (end of the intervention period) outcomes as an illustration of what 
can be gained by the estimation of growth curves. 

As a measure of the robustness of the estimated model, parameter 
estimates were applied to the ODI and pain VAS data (standardized to the 
RDQ mean and standard deviation) and residuals were checked for bias 
(the average value for residuals should be zero), and overall model fit (in 
terms of percentage of variance explained—regression sum of squares 
divided by total sum of squares) was compared. It was expected that since 
the pain VAS is known to correlate more highly with the RDQ than the 
ODI (Beurskens, de Vet, & Koke, 1996), the application of the estimated 
model parameters to the pain VAS would result in a fit closer to that of the 
RDQ than will be found for the ODI. 

The model was estimated using restricted (residual) maximum 
likelihood (REML) estimation in the PROC MIXED procedure of SAS for 
Windows, Version 9.1 (SAS Institute Inc., Cary, NC). Coding for growth 
curve analysis was based on Singer (1998). 

 
Results 

 
Figure 2 contains parallel plot (spaghetti plot) graphs of each 

participant’s actual change in RDQ scores over the 3-month intervention 
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period and for the 3-month follow-up. The thicker black line in each graph 
indicates the average RDQ score for that group’s participants over time. As 
can be seen, the average shape for the treatment group during the 
intervention period seems to be asymptotic, but the shape is indeterminate 
for the control group.  
 
Figure 2. Lines drawn between the raw Roland-Morris Disability Questionnaire 

(RDQ) scores for each member of the treatment group (top) and each member of 

the control group (bottom). The darker line is the plot of the average RDQ scores 

over time for each group. The crossover group is included with the rest of the 

control group in the computation of the average RDQ scores in the bottom graph. 
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Determination of the Best Curve Shape 
 

The results of the unconditional models for each hypothesized 
intervention period growth curve shape indicate that the asymptotic curve 
results in the best fit for the sample as a whole and for each group. The 
AICs and BICs for each shape for all three unconditional models are shown 
in Table 2. The asymptotic growth curve shape results in the smallest AIC 
and smallest BIC for all participants and for both groups. The difference 
between the asymptotic model BIC and the next smallest (the relapsed 
shape for all participants and the control group, and the linear shape for 
the treatment group) indicates strong evidence that the asymptotic shape 
gives the best fit to the data for all participants and for the treatment 
group, and indicates positive evidence, if not so strong, for the control 
group. 

 
Table 2 
Unconditional Model Fit Indices for Each Hypothesized Shape 

 Linear 
growth 

Asymptotic 
growth 

Delayed 
growth 

Relapsed 
growth 

All participants – AIC 1667.8 1634.6 1693.1 1669.8 
All participants – BIC 1683.5 1650.3 1706.6 1683.3 
Treatment group only – AIC 965.8 932.1 1001.2 968.6 
Treatment group only – BIC 975.8 942.1 1009.6 978.6 
Control group only – AIC 639.8 635.7 648.7 638.9 
Control group only – BIC  649.9 645.7 657.4 648.9 

Note. AIC = Akaike’s Information Criterion; BIC = Bayesian Information 
Criterion 

 
Unconditional Model Results  
 

The complete results of the asymptotic unconditional model are shown 
in Table 3. As can be seen, the average intercept (baseline value of the 
RDQ) across the sample is 6.79. On average, participants improve (go 
down) from their baseline values by 0.56 RDQ points per month. Of 
course, since time is modeled as an asymptotic curve, participants on 
average improve from baseline by 2*0.56 (or 1.12 RDQ points) in the first 
month, 3*0.56 (or 1.78 RDQ points) in the second month, and then remain 
at that value to the end of the intervention period. During the follow-up 
period participants on average improved significantly (went down) from 
their end of intervention (3-month) values by another 1.28 RDQ points.  

The variance, covariance, and residual values at the bottom of the table 
provide valuable baseline information on the sources of variation in 
individual RDQ values across participants. That there is significant 
variance across participants’ initial status (intercept) and rate of change 
during the intervention  period (time slope) justifies a model with random 
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Table 3 
Results of Each Model 

Variables 

 
Unconditional model 

Model conditional on 
group status 

Model conditional on 
group; fixed 

effects only for follow-up 

Model conditional on 
group & intercept  

covariates 

Estimate t p  Estimate t p  Estimate t p  Estimate t p  

Intercept  6.79 11.2 <.001 7.95 10.1 <.001 7.95 10.1 <.001 7.86 10.2 <.001 

Age          0.14 2.4 .018 

Sex          0.78 0.9 .373 

Co-morbidities          1.72 1.7 .095 

Afternoon shift          2.38 1.9 .063 

Night shift          -0.04 -0.0 .970 

Delivery person          -0.77 -0.6 .554 

Truck driver          -0.42 -0.2 .850 

Sales representative          0.47 0.2 .864 

Adjunctive care (M visits)         0.84 2.2 .035 

Crossover group status    -1.89 -1.1 .296 -1.89 -1.1 .296 -4.00 -2.3 .027 

Control group status    -2.63 -2.2 .030 -2.63 -2.2 .030 -3.59 -3.0 .004 

Time slope -0.56 -2.8 .006 -1.52 -7.7 <.001 -1.52 -7.7 <.001 -1.52 -7.7 <.001 

Crossover*time slope    0.69 1.5 .525 0.69 1.5 .137 0.68 1.5 .140 

Control*time slope    2.21 7.3 <.001 2.21 7.3 <.001 2.21 7.3 <.001 

Follow-up (FU) slope -1.28 -3.3 .001 -0.03 -0.1 .951 -0.01 -0.0 .979 -0.00 -0.0 .999 

Crossover*FU slope    -3.03 -2.8 .005 -3.11 -2.9 .004 -3.15 -2.9 .004 

Control*FU slope    -2.49 -3.6 .001 -2.46 -3.6 .001 -2.46 -3.6 .001 

-2 * Log likelihood 1620.6   1557.7   1557.8   1519.6   

AIC 1634.6   1569.7   1565.8   1527.6   

BIC 1650.3   1583.2   1574.8   1536.6   

Variance of intercept 22.21 5.0 <.001 20.81 4.9 <.001 20.85 5.0 <.001 17.60 4.5 <.001 

Variance of time slope 2.13 4.4 <.001 0.89 3.2 .001 0.90 3.4 .001 0.90 3.4 .001 

Intercept*time slope -3.99 -3.3 .001 -2.47 -2.8 .006 -2.51 -2.9 .004 -2.51 -2.9 .004 

Variance of FU slope 2.74 1.5 .065 0.00 .        

Intercept*FU slope 1.01 0.5 .641 -0.57 -0.3 .766       

Time*FU slope -1.74 -2.4 .015 0.05 0.1 .904       

Residual 3.85 7.8 <.001 3.77 9.3 <.001 3.77 9.3 <.001 3.76 9.3 <.001 

Note. Intercept = Estimate of initial status; AIC = Akaike’s Information Criterion;  
BIC = Bayesian Information Criterion; FU = follow-up.  
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intercepts and intervention-period slopes. The variance across participants 
in the follow-up period slope is not significant at p < .05.   However, as 
these hypothesis tests may not be completely reliable (Singer, 1998) and 
since the p is small (.065), the random effects coefficient for the follow-up 
period is left in the model for now. The covariance term for intercept and 
time/slope (-3.99) indicates that individuals’ baseline and intervention-
period slope values are negatively related—i.e., higher (worse) baseline 
RDQ scores are associated with more negative slopes (greater 
improvement) during the intervention period. This is not unexpected as 
those with worse starting values tend to have more room to improve. 
 
Conditional Model Results - Group Status 
 

The results of the first conditional model are shown as the next set of 
columns in Table 3. Here the intercept and two slope values are estimated 
conditional on study group assignment (treatment or control group) and 
whether this participant volunteered for the crossover group. The 
intercept term has changed (from 6.79 to 7.95) because it now represents 
the average baseline RDQ for the treatment group. The average baseline 
value for the control group as a whole is lower at 5.32 (7.95 - 2.63). The 
treatment group improved an average of 1.52 RDQ points per month over 
the intervention period. Again, due to the asymptotic shape, two-thirds of 
this improvement happens by the second month. On average the control 
group’s RDQ worsened by 0.69 (2.21 - 1.52) RDQ points per month. 
During the 3 months after the intervention period, the treatment group 
improved an additional 0.03 points on average from their intervention 
period end point, but this coefficient is not significant, indicating that for 
this group end-of-treatment outcome values held throughout the follow-
up period.  

The control group as a whole improved by an average of 2.52 (-2.49 + -
0.03) RDQ points during the 3-month follow-up period. However, a 
number of those in the control group (the crossover group) received 1 
month of treatment after the intervention period ended (during month 4). 
The crossover group improved by 3.03 RDQ points more than those in the 
control group who turned down crossover treatment. Because the 
crossover variable is centered on the control group mean, the average 
change during the follow-up period for the non-crossover group must be 
calculated as the average for the whole control group (2.52) minus the 
percentage of those in the control group who took the crossover treatment 
(42%) times the crossover group improvement (3.03) or an improvement 
of 1.25 RDQ points. The average change during the follow-up period for 
the crossover group is an improvement of 4.28 (1.25 + 3.03) RDQ points. 
This amount is the improvement due to the 1 month of treatment received 
and 2 months of post-crossover follow-up, and provides secondary 
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validation of the effectiveness of the study treatment. The crossover group 
also tends to have lower (better) baseline values of RDQ than the rest of 
the control group by 1.89 points, and this group had a greater worsening of 
RDQ over the intervention period (by an average of 0.69 RDQ points per 
month) than the rest of the control group. However, neither of these 
differences is statistically significant. 

Again, the variance, covariance, and residual values (now conditional 
variance-covariance estimates) at the bottom of the table provide 
information on how much of the various sources of variation in individual 
RDQ values across participants has been explained by group variables. The 
conditional variance for the intercept (initial status RDQs) dropped by 6 
percent from 22.21 to 20.81. Therefore, 6 percent of the variability across 
individuals in initial values is explained by group status. As treatment and 
control group status was randomly assigned, this percentage was not 
actually “explained” by group status. Instead it is the portion of variance 
across participants associated with group status due to a failure of 
randomization to equally allocate baseline RDQ scores. The conditional 
variance for the slope of the time variable during the intervention period 
dropped from 2.13 to 0.89. Therefore, group status explained more than 
half (58 %) of the variability across individuals’ intervention-period slopes. 
As the intention of the intervention was to change this slope, this is strong 
evidence of the effectiveness of this treatment. The conditional variance 
for the slope of the follow-up period time variable dropped to zero 
validating the non-significant estimate of variance from the unconditional 
model. As expected, the nested model comparison indicates that the fit of 
this model is significantly better than that of the unconditional model (χ2 

of 1620.6 - 1557.7 or 62.9 with 6 df, p = <.001).  
Because this model validates the lack of random effects for the follow-

up period slope (the variance of follow-up slope across participants is now 
zero), the model is re-run with only fixed effects for the follow-up period 
slope. These results are shown as the third model in Table 3. As can be 
seen the results stay essentially the same. The nested model comparison 
indicates that the fit of the model without random effects for the follow-up 
slope is not significantly different than that including random effects (χ2 of 
1557.8 – 1557.7 or 0.1 with 1 df, p = 0.752), and the AIC and BIC are 
reduced as an indication of the improved parsimony of this model.  

 
Conditional Model Results - Group Status and Participant 
Characteristics  
 

Akin to the process in general linear model fitting by which main 
effects are fitted before interactions, in HLM it is recommended to first 
develop the intercept model before that for the slopes (Raudenbush & 
Bryk, 2002). The fourth model shown in Table 3 includes all available 
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covariates for the intercept. The nine added explanatory variables have 
been centered on their grand means. Therefore, the group status 
coefficient estimates now represent those for a typical participant; one that 
represents the sample averages of age, sex, co-morbidities, adjunctive 
treatment use, and type and shift of worker. The average baseline RDQ 
score for the treatment group of 7.86 points differs from the 7.95 point 
estimate of the second model because it represents the baseline score for 
the treatment group after it has been adjusted to match the control group 
on the nine added variables. Similarly, note that the difference between 
the control and treatment group baseline scores is larger in this fourth 
model (3.59 vs. 2.63), as are the differences between baseline scores for 
the crossover group and the group that did not crossover (4.00 vs. 1.89)—
both due to group matching.  

The coefficients estimated for each of the nine new explanatory 
variables represent the change in the baseline RDQ score for a one-unit 
change in the variable. Baseline RDQ scores tend to be higher (worse) with 
age, for women, for those with co-morbidities at baseline, for those on the 
afternoon warehouse shift, for sales representatives, and for those using 
more adjunctive care at baseline. Baseline scores tend to be lower for night 
shift warehouse workers, delivery personnel, and truck drivers. The other 
coefficient estimates (those for the slopes of the intervention and follow-
up periods) remain very similar to those of the third model, as expected. 

Also as expected, the addition of covariates for the intercept has little 
effect on any of the conditional variance-covariance estimates other than 
the conditional variance for the intercept. It dropped to 17.60 indicating 
that 21 percent (1 - 17.60/22.21) of the variance in individuals’ baseline 
RDQ scores is explained by group status and by available participant 
characteristics. Since 6 percent is explained by group status (above), 15 
percent is explained by participant characteristics. No change is seen in 
the variance across participants in the slope of the intervention-period 
time variable. The nested model comparison indicates that the fit of this 
model, which allows participant characteristics to explain baseline scores, 
is significantly better (explains significantly more variance) than that of 
the model containing only group status (χ2 of 1557.7 – 1519.6 or 38.1 with 9 
df, p <.001). 

 
Fully Saturated Conditional Model  
 

In order to test whether participants’ characteristics also influenced 
their change in RDQ during the intervention and follow-up periods, a fully 
saturated model was tested. The nested model comparison for this model 
compared to that above indicates that the fully saturated model is not a 
significantly better fit to the data (χ2 of 1519.6 – 1497.3 or 22.3 with 18 df, p 
= .219). Also, inclusion of all available covariates for both slopes did little 
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to help explain the variance across participants in intervention-period 
slopes—the percentage explained went from 58% to 61%. Therefore, the 
participant characteristics that could explain the remaining variation 
across participants in intervention-period slopes were not measured and 
are still to be discovered. The results of this model are not shown.  

 
Comparison to Point Estimate Results 
 

A straight comparison between the two group’s 3-month scores after 
adjusting for baseline values (as reported in Szczurko et al., 2007) yields a 
net improvement in the treatment group over the control group of 7.23 
with a 95% confidence interval of -9.18 to -5.30. Using the results of the 
third model (Szczurko et al.’s analysis did not include covariates), a direct 
comparison between estimated 3-month RDQ scores (adjusting for 
baseline values) results in a net improvement in the treatment group over 
the control group of 6.63 (2.21 * 3). Figure 3 displays a graph of the growth 
curves estimated based on the third model and adjusted to be net of 
baseline. The graph also shows the point estimates from Szczurko et al. 
This graph illustrates not only the minor difference in the estimates 
attained, but also the wide difference in the amount of information 
generated by the two approaches. In one case two points are generated; in 
the other two curves and one line.  

 
Figure 3. Change in Roland-Morris Disability Questionnaire (RDQ) scores from 

baseline for each group based on the growth curve analysis compared to the point 

estimates from Szczurko et al. (2007). The top line is the control group trajectory 

and splits into those that did not take the crossover treatment during the follow-up 

period (black line) and those that did (dashed line). The lower line is the treatment 

group trajectory. 
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The 95% confidence interval for the model-based estimate is -8.42 to -
4.84 (based on a standard error for the slope of 0.91). Thus, utilizing the 
full dataset in the estimation of the 3-month impact of the intervention 
results in a narrowed confidence interval (a range of 3.58 points instead of 
3.88 points). Because including baseline covariates did not change the 
intervention-period slope estimate, the results of the fourth model yield 
the same the net impact estimate (6.63 RDQ points) and confidence 
interval (95% CI: -8.42, -4.84).  

 
Robustness of Model Estimates  
 

The estimated coefficients for the fourth model were applied to the ODI 
and the pain VAS outcomes to test their robustness. No bias was found 
(the sum of the estimated residuals for each outcome is not significantly 
different from zero), and the model was found to have almost exactly the 
same fit to these data. The total variance explained by the model for all 
three variables is about 44 percent.  

 
 

Discussion 
 

This paper presents an example of growth curve analysis that 
incorporates an alternative approach to the modeling of non-linear growth 
curves: hypothesized, directly-coded curve shapes. This approach offers 
several benefits over orthogonal polynomial contrast coding, and “regular” 
polynomial coding (i.e., the inclusion of higher order time variables). First, 
the multicollinearity seen between time and the higher order time 
variables can be avoided with little cost to the interpretability of the 
coefficients. Second, in cases of a limited number of measurements per 
individual, non-linear shapes can be tested without losing degrees of 
freedom to higher-order time variables or contrast codes. And finally, this 
approach requires that specific alternative expected shapes be 
hypothesized prior to analysis allowing direct testing of the underlying 
theoretical basis of each. 

Here the shape that best fit the data is one of rapid improvement 
followed by a slowing to a steady state (the asymptotic shape) that 
continued beyond the end or treatment and through the follow-up period, 
as hypothesized, for the treatment group. Validation of this theory 
(hypothesized shape) over the others as to how the intervention works 
across time indicates that this is a fast-acting treatment with effects that 
do not seem to relapse. This result might lead to consideration of 
shortening the duration of treatment and extending the follow-up period 
to look for possible later diminishing effects. 
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On the other hand, although the same intervention-period shape was 
the best fit for the control group, the slope coefficient was unexpectedly 
net positive (2.21 + -1.52) indicating an initial worsening slowing to a 
steady state. That the crossover group would improve after the 
intervention period when they received crossover treatment was expected. 
However, it was unexpected that the non-crossover members of the 
control group would also experience follow-up period improvement, albeit 
by a smaller amount (-2.46 + -0.00 - 0.42*-3.15 or 1.14 RDQ points). 
Because both alternative curve shapes and expectations for the slope 
coefficients (the negative sign of the intervention period coefficient and 
the non-significance of the follow-up-period coefficient) are specified 
ahead of time, the fact that something unexpected happened (the 
worsening of the control group during the intervention period and the 
subsequent improvement during the follow-up period for those not taking 
the crossover treatment) is highlighted. In the absence of prior 
specification, this result may have been lost in the focus on the net impact 
of the treatment. Instead these results call for a re-evaluation of the 
control intervention.  

In addition to the benefits of hypothesized directly-coded growth curve 
shapes, the use of growth curve analysis itself provides a better estimate of 
the impact of a treatment intervention than point estimates, as evidenced 
by the narrower confidence interval. This increase in accuracy is 
accompanied by an increase in information regarding not just end-point 
impacts, but of the healing trajectories of participants over the entire study 
period. As discussed above, this information is crucial to future practice 
recommendations and research designs.  

The ability to partition the unexplained variance into baseline, slope, 
and residual components is also useful to the process of model estimation 
and interpretation. Using this information it can be shown that available 
participant characteristics (age, sex, co-morbidities, adjunctive care, and 
work type and shift) explained 15% of the variance across participants in 
initial status. Group status explained 58% of the variance across 
participants in rate of change. Although the majority of variation in initial 
status remains to be explained by future work, it is noteworthy  that the 
largest part of the variation across participants in RDQ change over time—
the variation that is the target of treatment—is explained by whether they 
received the study treatment or not.  

In summary, the use of growth curve analysis in the estimation of the 
impact of study interventions not only improves the statistical quality of 
the estimates, but also provides information on the healing trajectory—
information that is vital to the determination of appropriate treatment 
duration. The use of hypothesized growth curve shapes improves standard 
growth curve methodology by requiring a priori specification and allowing 
explicit testing of viable shape options while maximizing model degrees of 
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freedom and avoiding multicollinearity. As funding for intervention 
studies is limited, it is crucial that the best estimates are obtained and the 
most information gained from each study conducted. The use of 
hypothesized directly-coded curve shapes and growth curve analysis can 
help ensure that none of these data are wasted.     
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