
Journal of Methods and Measurement in the Social Sciences   
Vol. 2, No. 2, 63-79, 2011 
 

63 
 

Simple, Powerful Statistics:  An Instantiation of 
a Better ‘Mousetrap’ 

 
Mark Roberts 

British Columbia, Canada 
  
 
R.S. Rodger fully developed, more than three decades ago, probably the most powerful 
methodology which exists for detecting real differences among population means (μ’s) 
following an analysis of variance.  Since it is a post hoc method, a theoretically infinite 
number of potential statistical decisions may be considered, but Rodger’s method limits 
the final number of decisions to a single set which contains exactly J-1 (i.e., v1, the 
number of means in a study minus one) of them.  It also constrains the number of these 
J-1 decisions that may be declared statistically “significant.”  Rodger’s method utilizes a 
decision-based error rate, and ensures that the expected rate of rejecting null contrasts 
that should not have been rejected (i.e., the type 1 error rate) will be less than or equal to 
either five or one percent, regardless of the number of contrasts examined by a researcher 
prior to finally deciding upon the scientifically optimal set of decisions. 
 The greatest virtue of Rodger's method, though, is not its considerable power, but its 
explicit specification of the magnitude of the differences that the researcher will claim to 
exist among the population parameters.  The implied true means that this method 
calculates are the theoretical population μ’s that are logically implied, and mathematically 
entailed, by the J-1 statistical decisions that the researcher has made.  These implied true 
means can assist other researchers in confirming or disconfirming population parameter 
claims made by those who use Rodger’s method.  A free computer program (SPS) that 
instantiates Rodger’s method, and thereby makes its use accessible to every researcher 
who has access to a Windows-based computer, is available from the author. 
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 Ralph Waldo Emerson’s saying, “build a better mousetrap and the 
world will beat a path to your door,” seems not as commonly heard now.  
This is perhaps so because the saying may not be true for even a majority 
of Emersonian mousetrap equivalents.  R.S. Rodger invented a 
significantly better procedure for statistical decision-making following an 
analysis of variance (ANOVA) and introduced it in seven articles published 
in the prestigious-enough British Journal of Mathematical and Statistical 
Psychology in the 1960's and 70's.  Since then, it has languished and is not 
widely known or frequently used. 1 
 

                                                 
1  An opinion to the contrary was expressed by Williams, Frame, & LoLordo in their 1992 
article: “We chose Rodger’s method because it is the most powerful post hoc method 
available for detecting true differences among groups.  This was an especially important 
consideration in the present experiments in which interesting conclusions could rest on 
null results.  Although Rodger’s method is commonly used ...” (p. 43, emphasis added).  
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Rodger’s  Method:  Implied  True  Parameters  from  Decisions 
Made Post Hoc 
 
 What accounts for the superiority of Rodger’s method?  The short 
answer is that it uses a decision-based (per contrast) type 1 error rate and 
new critical F values, which jointly produce this effect:  “Rodger’s 
approach ensures that statistical power does not decline (and even 
increases) with increasing numerator degrees of freedom” (Delamater, 
Campese, & Westbrook, 2009; p. 228).   This stands in direct opposition to 
the characteristics of traditional experiment-wise error rates and 
commonly used F values or studentized range values for other post hoc 
procedures (e.g., those of Scheffé, Tukey, and Newman-Keuls).  Using 
traditional F table values when the null hypothesis is genuinely false, 
produces a serious decrease in the probability (β) of detecting a greater-
than-zero treatment effect of fixed size with increasing numerator degrees 
of freedom. 
 This problem with traditional experiment-wise error rates is likely 
most easily recognized in the context of a factorial analysis, where there is 
greater power to detect a non-zero treatment effect in the I main effect 
than the J main effect (assuming there are fewer I than J treatment levels), 
which itself has greater power to detect a fixed-sized effect than the I x J 
interaction.  In the most important article about his method (by my 
reckoning), Rodger (1974) says:  “this feature is supposed to be well 
known, since it is a direct result of the unequal number of replications in 
the different effects.  ...  When it is said that factorial analyses will inform 
us whether or not interactions exist, the tongue should be held in the 
cheek!” (p. 194). 
 By adopting a decision-based type 1 error rate and calculating new 
decision-wise F values to be used when making post hoc statistical 
decisions, Rodger’s method avoids the problems associated with 
traditional experiment-wise F values.  To accomplish this, Rodger begins 
(as did Scheffé) by noting that the analysis of variance is a procedure that 
partitions the overall, between-groups variance into J-1 (i.e., v1, the 
number of means being analyzed minus one) completely independent 
components.  Consequently, when J-1 mutually orthogonal contrasts are 
constructed following an ANOVA, the sum of the F values for each of the 
individual contrasts in this set will necessarily be equal to the overall 
ANOVA variance ratio (i.e., the omnibus F value, denoted here as Fm). 
 Unfortunately, when partitioning the overall ANOVA between-groups 
variance into independent components (and J > 2), it is theoretically 
possible to do this in an infinite number of ways (i.e., that many, 
infinitesimally different from one another, sets of J-1 mutually orthogonal 
contrasts could be constructed).  Scheffé’s decision rule permits an infinite 
number of contrasts to be declared significantly different from zero 
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whenever Fm for a particular study is equal to or greater than the 
traditional critical F value.  Rodger chose a different approach, and instead 
considered how an appropriate limit (r) could be placed on the number of 
declarations of statistical significance.  The fact that the expectation of r/v1 
is a linearly decreasing function of the numerator degrees of freedom (v1) 
when the usual F table values are used (alluded to in the second paragraph 
of this article), led Rodger to construct new F values that keep the 
expectation of r/v1 at a constant .05 or .01. 

These new critical F values (denoted F[Eα]; v1, v2 to distinguish them 
from the traditional values of Fα; v1, v2) appear in separate tables for Eα = 
.05 and Eα = .01 in Rodger (1975a).  Rodger’s method uses the tabled 
F[Eα] value for a given study in two ways.  It is first used to set a limit on 
the maximum number of rejected null contrasts (i.e., declarations of 
statistical significance) that Rodger’s method permits.  This limit is 
 

r  =  [Fm  / F[Eα]; v1, v2]  ≤ v1; 
 
or, in plain English, the maximum number of rejectable contrasts equals 
the integer value of the ANOVA variance ratio divided by Rodger’s critical 
F value, but cannot be permitted to exceed J-1.  The second use for the 
critical F[Eα] value for a particular study is to determine which specific 
contrasts are rejectable.  When Fm ≥ F[Eα]; v1, v2, Rodger’s method 
permits as many as r contrasts to be rejected (though that many may not 
always be scientifically interpretable), and any contrast with an F value 
equal to or greater than F[Eα]; v1, v2 is a rejectable one. 
 Except when v1 = 1 (i.e., there are only two means), Rodger’s F[Eα] 
values are lower than the traditional Fα values.  Using F[Eα] values in the 
two ways mentioned in the previous paragraph ensures that when r 
contrasts are actually rejected in the set of decisions that the researcher 
ultimately adopts, the expected rate of null-contrast rejections will be Eα 
(i.e., .05 or .01) when all null contrasts are true.  A number of researchers 
have used the greater power to detect non-zero treatment effects that 
Rodger’s F[Eα] tables afford, and this can be done without further 
analysis.  Utilizing Rodgerian post hoc decision-making in this rather 
limited way is certainly an improvement over the procedures that 
researchers typically use, and requires nothing more than looking up the 
F[Eα] values and using them instead of the traditional Fα values to find r 
or fewer null-contrast rejections. 2 
 Using Rodger’s full method, though, requires considerable spreadsheet 
expertise or a computer program that correctly implements it.  Until now, 

                                                 
2 Peter Urcuioli, for example, has used this aspect of Rodger’s methodology in about a 
dozen published articles in the past decade (e.g., 2008), and in many others going back to 
1981. 
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only Rodger’s own program (IMPLY, written in FORTRAN for use on 
mainframe computers) has done this, and it was not widely disseminated.  
My SPS (Simple, Powerful Statistics) computer program is written in 
Visual Basic for use on a Windows-based personal computer.  The SPS 
implementation of Rodger’s method requires that its users make J-1 
statistical decisions that are constrained in the following ways. 
 First, these statistical decisions are expressed by assigning numbers 
(contrast coefficients) to the means that indicate how they are to be 
compared with one another.  Each of the J-1 decisions is required to be 
stated in the form of contrasts, which simply means that the sum of the 
coefficients for each contrast (entered across one row in the contrast 
matrix) must equal zero.  The simplest contrasts are comparisons (with 
coefficients 1 and -1) that assess the magnitude of the difference between 
two selected means.  Means that are not part of a statistical decision are 
given contrast coefficients of zero, and contrasts of any degree of 
complexity are permitted.  The full contrast matrix has J-1 (the number of 
contrasts) rows and J (the number of means) columns, and each cell 
contains either a zero or a non-zero number. 
 Second, when the F value of a contrast equals or exceeds Rodger’s 
critical F[Eα] value and that contrast is included in a “decision set,” it 
counts as one of the r rejectable contrasts that are permitted.  [A decision 
set is comprised of a matrix of contrast coefficients for J-1 contrasts, along 
with a vector of δh values (discussed below) that have been decided for 
those contrasts, and a vector of μ symbols.]  If r is less than J-1, as it 
frequently will be, then at least v1 - r of the decisions will necessarily be 
accepted null contrasts.  Scientists often have good reason to declare that 
no theoretically meaningful differences exist among two or more 
populations represented by two or more sample means, but more is 
needed to justify such declarations than the mere statistical non-
significance of the F values of particular contrasts. 
 What warrants declarations that no meaningful differences exist 
among two or more population means is this:  1) the researcher specifying 
a theoretically meaningful effect size (denoted by Rodger as a g value), and 
2) using this information to ensure that a sufficient number of subjects are 
included in the study to have enough power to detect non-zero effects of 
that size.  SPS makes it a simple matter to use the tables that Rodger 
(1975b; 1978) provided which permit the determination of the sample size 
needed to set the null-contrast rejection rate at a desired level of Eβ (say, 
.95) when using one-stage (or, possibly two-stage) sampling.  In other 
words, this determination of the sample size required to detect 
theoretically specified non-zero effect sizes needs to occur at the design 
stage, so that the accepted null contrasts in the decision sets that are 
considered during the analysis stage are defensible. 
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 Third, all of the contrasts in a decision set must be linearly 
independent of one another, and will preferably be mutually orthogonal; 
i.e., be characterized by the strong form of linear independence that occurs 
when the cross-products of the contrast coefficients for each of the (J-1) 
(J-2) / 2 pairs of contrasts in the decision set sum to zero. 
  Rodger’s method is predicated on evaluating such appropriately 
constrained J-1 statistical decisions as a single set.  There is a unique 
aspect of this method that Rodger summarizes in a single sentence in the 
abstract of his 1974 article: “Theoretical means are deducible from 
decisions for v1 mutually orthogonal contrasts and, if rejected null 
contrasts are given suitable non-zero values, there is no ambiguity about 
the theoretical means” (p. 179).   These non-zero values for the rejected 
null contrasts (g values) are the “scale-free” component of the linear, non-
central parameter δh (formula 9 in Rodger, 1975b), and they are specified 
by the researcher to indicate the size of the non-zero effects the 
experiment or study was designed to detect. 3  Accepted null contrasts are 
assigned a g value of zero (which signifies a negligible treatment effect), 
and the δh value that is decided for each contrast is the product of the g 
value for a contrast and the sum of the squared contrast coefficients for 
that contrast.  As if by magic, at least to those of us who are 
mathematically challenged, Rodger’s method takes the contrast matrix 
and δh values and works out what population parameters (μ’s in this case) 
are mathematically necessitated by the specific decisions that the 
researcher has made.  Unless two-stage sampling has been used (which 
permits purely numeric decided values), these implied true means have to 
be expressed in units of the unknown population standard deviation (σ).  
Nevertheless, the implied true means are a very precise expression of the 
outcome of the study – these theoretical population parameters quantify 
the magnitude of the differences that the researcher is claiming to exist 
among the population means (μ’s). 
 This does not deny the value of directly reporting the sample observed 
effect sizes, as is now commonly advocated – it simply quantifies what the 
investigator believes the “true effects” are and allows more precise checks 
on those claims by others.  By reporting the g and Eβ values used in the 
design of a study, and the implied true means that constitute the study’s 
outcome,  valuable information is provided that can guide future 
researchers on that topic in deciding upon the sizes of effects that their 
experiments will be designed to evaluate. 

                                                 
3 “Obviously we do not know the true value of gh in any statistical investigation; we can 
state only what value we hope to detect with probability β.  It is sometimes possible to 
specify a value for gh which seems reasonable in the light of previous research and theory, 
but in the absence of such information it is not unreasonable to set gh ±1, which is a 
moderately large effect that may be detected with good power by small samples” (Rodger, 
1974; p. 189).  SPS uses this suggested value of 1 as its default for the g values. 
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 Whenever the ANOVA variance ratio (Fm) for a particular study is 
equal to or greater than Rodger’s critical F[Eα] value, it is always 
mathematically possible to construct mutually orthogonal sets of contrasts 
with r rejected and v1 - r accepted null contrasts.  It is also possible, 
though, that the contrast coefficients for the decisions in these sets may be 
quite complicated ones that are not readily interpretable scientifically.  
Rodger has consistently maintained that scientific meaningfulness is 
paramount and always trumps mathematical possibility when it comes to 
constructing mutually orthogonal decision sets with r rejected null 
contrasts.  If faced with the absence of a scientifically-sensible, orthogonal 
decision set that contains r rejected contrasts, the researcher has two 
available options.  The first is to instead adopt a scientifically meaningful 
decision set that has r rejected contrasts that are linearly independent but 
not mutually orthogonal.  The second option is to adopt a scientifically 
meaningful decision set that has fewer than r rejected contrasts.  The 
implied true means are always computable by the user of Rodger’s method 
provided that the contrasts in the decision set are linearly independent of 
one another and a non-zero g value is specified for each (and at least one) 
rejected null contrast. 
 
A Simple Illustration of Rodger’s Method 
 
 In this section I will basically reiterate, and try to make more clear, 
some of the important aspects of the foregoing discussion of Rodger’s 
method by using a numerical example.  A few new points will also be 
made.  Although it may not be good statistical practice to pick up someone 
else’s data and re-analyze it, I will frame my example in this way so that it 
can be devoid of any subject-matter meaning and the focus can remain 
solely on the numbers. 
 Assume that we happen to find means and standard deviations from a 
discarded experiment that had N = 8 subjects in each of three independent 
groups:  1) 4.688 & 0.567, 2) 4.825 & 0.889, and 3) 5.475 & 0.486.  When 
this information is processed by a suitable computer program (e.g., SPS), a 
one-way analysis of variance summary table may be viewed.  In this case, 
the overall F value (Fm) is 3.147 and the traditionally used critical F.05 
value with 2 and 21 degrees of freedom is 3.47.  Obviously, Fm is not large 
enough to be judged statistically “significant” and the unknown 
researcher’s conclusion must have been that nothing of interest was found 
(hence, since statistical decisions are always made about population 
parameters rather than obtained sample values, μ1 = μ2 = μ3 is plausible). 
 However, if a more powerful procedure were used, namely Rodger's, 
the researcher would have come to a very different conclusion about 
his/her experiment.  When Rodger's method is used and r is greater than 
zero, as it is here, it is always possible to find r rejectable null contrasts 
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across the population parameters (μ's in this case).  Rodger’s critical 
F[.05]; 2, 21 value is 2.739, so Rodger's method can reject r = [3.147 / 
2.739] = 1 null contrast in a decision set with two contrasts, and  v1 - r (i.e., 
2 - 1 = 1) of the contrasts in the decision sets constructed for this 
illustration will be a single, accepted null contrast.  In any study, the 
difference between one rejectable null contrast and none is surely “a 
difference which makes a difference” (this phrase was Gregory Bateson’s 
definition of information).  
  There is a colloquial (and not literally true) sense in which Rodger’s 
method also ensures that each one of the as many as r rejected null 
contrasts the researcher includes in the adopted decision set (despite 
perhaps contemplating the scientific merit of numerous contrasts in many 
decision sets) will have at most an .05 or .01 chance of having been 
rejected in error.  In the same sense, the probability of it being a type 1 
error will be less than five or one percent for each rejected null contrast if 
the adopted decision set contains fewer than r rejections.  The correct way 
of putting this was stated above – when Rodger's F[Eα] values are used 
and r null-contrast rejections are included in a set of J-1 decisions, "the 
expected rate of null-contrast rejections will be Eα (i.e., .05 or .01) when 
all null contrasts are true.”  When using Rodger's method over the long-
run, the rate of rejecting null contrasts that should not have been rejected 
will be Eα.  If, however, the one null-contrast rejection that is included in 
the decision set that will soon be adopted in this illustration is actually a 
true null, the probability of my committing a type 1 error when I reject it 
will be 100 percent.  It is the long-run average of making this type of error 
that Rodger's method ensures will be no larger than five (or one) percent.  
It is important to remember than an error occurs, in the statistical context, 
if and only if a decision is made that a specified relationship among 
population parameters either is, or is not, equal to some number (usually, 
zero), and the opposite is true.  Rodger’s very sensible, and cogently 
argued, position is that statistical error rate should be based exclusively on 
those things in which errors may occur, and that (necessarily, by 
definition) can only be the statistical decisions that researchers make. 
  When the population parameters in any experiment are not all equal to 
each other, as is presumably true in this example, the question that 
naturally arises is:  How, specifically, do the population means (or 
proportions, 4 or ranks) differ from one another?  Part of the researcher’s 
job is to make scientifically-informed statistical decisions and then make a 
claim about the answer to this question.  A maximum of J-1 statistical 

                                                 
4 See Rodger (1969) for the application of his method with independent proportions.  In 
addition to providing a Rodgerian analysis of means, SPS also does this for proportions 
and for ranks.  All three of these types of data may come from either independent or 
correlated groups. 
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decisions may be made without introducing contradiction or unnecessary 
repetition into a decision set.  Repetition is sometimes a good thing, as I 
hope you can appreciate in this section of my article.  But it is not desirable 
in a set of statistical decisions.  In this context, repetition of previous 
information, and the far worse offense of contradicting oneself, may not 
even be recognized because doing so may require a greater ability than any 
of us possess to “see” logical implications that may have to be deduced 
from many concurrent decisions.  Rodger’s method prevents repetition, 
and contradiction, from entering into the statistical decision-making 
process by restricting the decisions that may be made to J-1 of them that 
are all at least linearly independent of one another.  Consequently, just two 
statistical decisions that satisfy the linearly independent criterion will 
appear in each of the three decision sets that will be constructed and 
considered for possible adoption.  To reiterate, no more than r = 1 decision 
of the J-1 = 2 decisions to be made will be a null-contrast rejection, so that 
we can know that the probability of a type 1 error will not exceed the 
selected Eα = .05 level. 
 As stated earlier, the simplest contrasts are comparisons of one mean 
with another.  With the three sample means arranged in ascending order 
and denoted m1, m2, and m3, the sum of the contrast coefficients (0, -1, and 
1) times the sample means (Σcjmj) for all three possible ways of comparing 
two means at a time, and the F values of these contrasts are:  1) m2 - m1 = 
0.137; F = 0.084, 2) m3 - m2 = 0.65; F = 1.881, and 3) m3 - m1 = 0.787; F = 
2.757.  Only the third contrast comparing the largest mean with the 
smallest one has an F value that exceeds Rodger’s critical F[.05] value of 
2.739, so we can include that rejected null contrast in a decision set and 
thereby declare that μ3 - μ1 > 0 (i.e., μ3 > μ1).  If someone were inclined to 
do something that Rodger’s method precludes, and assert the truth of all 
three of these statistical decisions (since each one does have some 
statistical justification), contradiction will ensue.  This follows from the 
fact that if μ3 - μ2 = 0 (contrast two) and μ2 - μ1 = 0 (contrast one) are 
accepted as being true, then that individual would be claiming both that μ3 
= μ2 and that μ2 = μ1.  These two decisions taken together logically require 
that μ3 = μ2 = μ1 and, since this is so, one cannot simultaneously, without 
contradiction, also accept the third contrast which states that μ3 > μ1.  The 
dictates of logic need to be accorded priority over statistical possibility, 
especially when a statistical methodology permits such folly.  Logic, or 
folly, will be embedded in the researcher's choice of what to claim. 
 Two obvious decision sets with J-1 = 2 decisions can be constructed 
from the three contrasts above as follows:  1) use the rejectable third 
contrast with the non-rejectable first contrast, and 2) use the rejectable 
third contrast with the non-rejectable second one.  The two contrasts are 
not orthogonal to one another in either of these two decision sets, but they 
are linearly independent of one another so either set could be adopted.  As 
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already noted, the rejected null contrast that is included in both decision 
sets asserts that μ3 > μ1, the accepted (i.e., non-rejected) null contrast in 
decision set #1 asserts that μ2 = μ1, and the accepted null contrast in 
decision set #2 asserts that μ3 = μ2.  The logically implied ordering of the 
three μ’s in these two decision sets is thus as follows:  set #1 says that μ1 = 
μ2 < μ3, and set #2 says that μ1 < μ2 = μ3.  It is clear, however, that μ2 is 
much closer to μ1 than it is to μ3 (since m2 - m1 = 0.137 while m3 - m2 = 
0.65), so the pair μ2 - μ1 = 0 and μ3 - μ1 > 0 (i.e., decision set #1) will fit the 
data better. 
 Of course, there are lots of other possible decision sets for three means, 
including many that are mutually orthogonal.  If we start with the 
rejectable contrast above (comparison three), we can construct a contrast 
that is orthogonal to it by taking the average of the lowest and  highest 
means and compare that with the middle one; in other words, 
theoretically, (μ1 + μ3) / 2 - μ2.  Contrasts, as previously noted, must have 
coefficients that sum to zero, and for this particular one they will be 0.5, -1, 
0.5 or, if each is multiplied by 2 in order to make integer rather than 
decimal coefficients, 1, -2, and 1.  For this contrast, (m1 + m3)/2 - m2 = 
0.513 and its F value is 0.390.  This contrast (with coefficients 1, -2, 1) is 
orthogonal to the rejectable contrast (with coefficients -1, 0, 1),  because 
the cross-products of the two sets of coefficients (1 × -1, -2 × 0, and 1 × 1) 
sum to zero.  In addition, when all J-1 contrasts are mutually orthogonal 
(i.e., every contrast is orthogonal to every other one), the sum of the 
contrast F values will be the overall F value (Fm =  2.757 + 0.390 = 3.147).  
This is mathematically necessitated by the fact that, as stated earlier, “the 
analysis of variance is a procedure that partitions the overall, between-
groups variance into J-1 ... completely independent components.”  The 
non-rejectable contrast here clearly states that μ2 is somewhere between 
the other two, so this orthogonal, third decision set logically implies that μ1 
< μ2 < μ3. 
   In addition to these three decision sets, many of the infinite number of 
not-so-simple sets could (but mercifully, won’t) also be constructed.  There 
are, after all, only two basic logical orderings of three population means 
that are not deemed to all be equal to one another:  1) two of the μ’s are 
equal to each other and greater than or less than the third, or 2) all three 
μ’s are different from one another and they are ordered in one of six 
possible arrangements.  The number of possible patterns of arrangements 
is greatly expanded, of course, as the number of means in a study 
increases.  But even in this simple example, the three decision sets that 
have been constructed imply three quite different orderings of the true 
population means for the data being considered. 
   How should we decide which of these three specific orderings is the 
most scientifically sensible one?  In this instance we can’t say anything 
about this because, despite having now found the raw scores that the 
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stated descriptive statistics were calculated from (a fortuitous occurrence 
that facilitates analyzing the data with other computer programs and 
alternative procedures), we still know nothing about this experiment.  But 
Rodger’s fundamental answer to this question is that the researcher’s 
understanding of theory and prior research in the domain that the 
experiment or study was designed to investigate should play a 
determinative role in making this decision.  Ideally, I think he would say, 
anyone using his method should be able to construct multiple (preferably, 
mutually orthogonal) sets of contrasts that reflect theoretically interesting 
differences that might exist among the population parameters, and then 
exercise good judgment when deciding which set to adopt.  In this 
example, the numbers that are being considered will remain 
decontextualized.  Even so, Rodger’s method provides important 
information that must be considered when choosing among competing 
sets of decisions. 
 With three different decision sets that imply quite different orderings 
of the population μ’s, it is time to do the Rodgerian matrix magic (Rodger 
provides an illustration of how this is done for three means at equation 23 
in his 1975b article, but this is impressive whether you understand its 
mathematical basis or not).  Using a constant value of g = 1 (see footnote 
3), the three sets of implied true means for the decision sets created above 
are:  1) -.47σ, -.47σ, .94σ;    2) -.94σ, .47σ, .47σ; and 3) -.71σ, 0σ, .71σ.  As 
expected, these three sets of implied population means are very different.  
The statistical help that Rodger’s method offers in the decision-set 
selection process consists of two measures of how closely associated the 
sample means from a study are with the implied true means for each 
decision set that will be considered for possible adoption. 
 One obvious measure of the “fit” between the sample means and 
implied true means (or ranks, or proportions) is provided by the Pearson 
correlation coefficient, which for the three decision sets in this example 
are:  .986, .637, and .937.  Another fit statistic is discussed in Rodger 
(1978, p. 169-170), which quantifies the amount of variation in the sample 
means that is not accounted for by the implied means.  The closer this 
residual F value is to zero, the better the fit.  The obtained residual F 
values for the three decision sets under consideration are equal to the non-
rejected contrasts’ F values:  .084, 1.881, and .390.  A relatively low fit 
residual value (or correspondingly, a high correlation between the sample 
and implied means) should be regarded as a necessary condition for 
concluding that a particular decision set that is being considered for 
possible adoption is optimal.  Ordinarily, neither of these two assessments 
of fit can ever be taken as a sufficient condition for determining which is 
the best of the alternative decision sets vying for adoption consideration.  
Only in a highly improbable scenario such as this one should a researcher 
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have nothing better than fit statistics upon which to base the choice 
regarding the set of decisions that will be asserted and interpreted. 
 From this simple illustration of Rodger’s method of post hoc analysis of 
means, it should be apparent that statistical decisions have logical 
implications about the population parameters that are of interest in every 
experiment.  In the simple case of three means illustrated here, it is easy to 
keep track of the logical implications of the contrasts included in each of 
the three decision sets.  With as few as four means it starts to become 
rather difficult to “see” even the ordinal positioning of all four implied 
means prior to doing a Rodgerian analysis of those means.  And with not 
many more than four means, it is difficult, if not impossible, to either 
intuitively or laboriously decipher how the contrasts in a decision set 
collectively affect the population parameters (e.g., the implied true means) 
that they logically imply.  Usually, the only way to fully know what is 
logically implied by the statistical decisions that researchers make is to do 
the mathematical (i.e., matrix) operations that underlie Rodger’s insight 
into how this can be achieved. 
     This illustration of Rodger's method is nearly finished, and much of 
what has thus far been discussed is summarized in Table 1.  As noted 
above, the data analyzed there are for sample means mj = 4.688, 4.825, 
5.475 and standard deviations = .567, .889, .486, each based on N = 8 
subjects, and yielding ANOVA Fm = 3.147.  Rodger’s (1975a) critical 
F[0.05]; 2,21 = 2.739, which makes the number of rejectable null contrasts 
r = [3.147/2.739] = [1.15] = 1. 

 
Table 1 
Three Possible Sets of Contrast Pairs and Their Implied μj 

Set & 
contrast# 

Contrast 
coeff.  cj 

 
Σcjmj 

Contrast 
F value  

Ordering of  
the μ’s 

Fit statistics 
corr.   resid. 

Implied 
true μj   

I  (1) -1, 0, 1 .787 2.757  
μ1 = μ2 < μ3 

 
.99     0.084 

 
-.47σ, -.47σ, .94σ 

(2) -1, 1, 0 .137 0.084 

II  (1) -1, 0, 1 .787 2.757  
μ1 < μ2 = μ3 

 
.63      1.881 

 
-.94σ, .47σ, .47σ 

(2) 0, -1, 1 .650 1.881 

III (1) -1, 0, 1 .787 2.757  
μ1 < μ2 < μ3 

 
.94     0.390 

 
-.71σ, 0σ, .71σ 

(2) 1, -2, 1 .513 0.390 

Note: The implied true means (μj) must be expressed in units of the unknown population 
standard deviation when the usual single stage of sampling is employed. 

 
 On statistical grounds alone, it is apparent that the contrasts in 
decision set II imply population means that are not well-fitted to the 
sample means obtained in this experiment.  The second decision set 
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should not be seriously considered for adoption.  Either of the other two 
decision sets might be the best choice depending on what the researcher 
knows about the field that this experiment was investigating.  In this 
illustration, that knowledge has been presumed to be non-existent, so 
decision set I seems the best choice. 
 What are the implications of this example for my assertion (in the first 
sentence of the article abstract) that Rodger's method is probably the most 
powerful post hoc procedure in existence?  The single null-contrast 
rejection that was included in all three of the decision sets that were 
constructed for this example is the same one:  μ3 - μ1 = 0.  The data here 
originally belonged to someone else, and we can ask what other post hoc 
procedures that person could have employed that have sufficient power to 
similarly reject μ3 - μ1 = 0.  When a one-way analysis of variance is 
performed on the raw scores for these three groups by a frequently-used 
statistical analysis program (SPSS), and all the tests on offer under the 
"Equal Variances Assumed" heading are selected, only Fisher's LSD (Least 
Significant Difference) test receives the honorific asterisk signifying that 
"the mean difference is significant at the 0.05 level."  The LSD test does a 
"protected t-test" on as many comparisons as can be found, but only if     
Fm ≥ F.05, v1, v2 (i.e., the traditionally used critical F value).  When this 
criterion is met (and it isn't in this example, since 3.147 < 3.47), Fisher's 
LSD test typically permits the researcher to declare a lot of null contrasts 
to be statistically “significant." 
   Consequently, it appears that Rodger's method is the only post hoc 
procedure that can credibly reject μ3 - μ1 = 0 for the data in this example.  
As previously stated, it does this by: 1) requiring that the researcher make 
exactly the same number of statistical decisions (i.e., v1 = J-1) as the 
number of orthogonal components that an analysis of variance 
decomposes the overall variation among the sample means into, 2) 
allowing no more than r of these decisions to be null-contrast rejections 
(i.e., declarations of statistical significance), and 3) using Rodger's F[Eα]; 
v1, v2 values.  The decision-based error rate that Rodger's method uses is 
responsible for the increased power that his method possesses, and it also 
ensures that the long-run average number of null-contrast rejection errors 
(type 1 errors) when using this method will be less than or equal to Eα = 
.05 or .01.  As an anonymous reviewer of an earlier version of this article 
put it:  “lack of power in conventional post-hoc procedures ... is [largely 
attributable to] unneeded control for the family-wise [actually, 
experiment-wise] error rate."  With Rodger’s method, a researcher is 
permitted unlimited access to post hoc data snooping, and, because a 
decision-based error rate is utilized (as is true of planned t-tests), also 
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generally has more power to detect real differences among population 
parameters than can be obtained with other statistical procedures. 5 
 I leave it to any interested statisticians to do the work necessary to 
conclusively establish whether or not Rodger's method is, as seems very 
likely, the most powerful post hoc procedure in existence.  The most 
important part of the story being illustrated here, though, will be true 
regardless of the future consensus among statisticians about the "most 
powerful" title.  If there were another post hoc procedure that was 
powerful enough to reject μ3 - μ1 = 0 in this example, the user of that 
(presumably non-existent) method could also claim that μ1 < μ3.  But 
where does μ2 fit into the picture?  The answer is obvious – its placement 
relative to the other two μ's is entirely dependent on what the researcher 
chooses to claim.  The statistical decisions that researchers are free to 
make (such as which accepted null contrast to use to complement the 
obvious, rejectable null contrast in this simple illustration) result in 
different orderings of the implied population μ's.  It is not enough to 
merely say that some of the population means are unequal to one another.  
The researcher should specifically indicate in what way she/he believes 
they are unequal.  That is exactly what post hoc testing is supposed to do – 
assist the researcher in making decisions regarding what to claim about 
the population parameters.  There can be no doubt at all that Rodger's 
method is the only post hoc procedure in existence that explicitly provides 
the "true" population parameters that are logically implied, and 
mathematically entailed, by the statistical decisions that researchers make.  
Rodger's method will do this for up to 61 means, or ranks, or proportions 
as readily (though not quite as quickly, since more mathematical 
calculations are necessary) as it did so for the 3 means in this illustration. 
 
The SPS (Simple, Powerful Statistics) Implementation  
of Rodger’s Method 
 
 The raison d’être of the SPS computer program is to make Rodger's 
method of post hoc decision-making accessible to researchers.  The 

                                                 
5 Implicit in this sentence is the compelling reason for doing post hoc rather than planned 
tests in the first place.  With post hoc decision-making it is possible to:  1) say something 
important about population parameters without having to know what you are going to say 
before collecting your data, and 2) preclude ever being in the unenviable position of 
merely reporting that what you intended to say isn’t warranted.  Quite apart from this, the 
power inherent in Rodger’s method permits differences between population parameters 
to be found very economically.  In his re-analysis of an experiment in which there were 10 
subjects per group, Rodger claims that the difference of .37σ between two specific implied 
μ’s should be regarded as a real difference in the population μ’s (in that particular 
instance).  He then notes:  “To detect a difference μ12 - μ22 = -0.37σ in a planned, two-
sided t test with α = 1 - β = 0.05 would require N = 190 in each sample” (Rodger, 1974; p. 
197). 
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purpose of this article is to hopefully interest some people in using (or at 
least giving some further consideration to) Rodger's method.  It thus 
seems reasonable to say a bit more about how easily Rodgerian statistical 
analyses can be performed with the SPS program. 
 The input data that SPS typically uses are raw scores from a study that 
have been saved in a comma-delimited or tab-delimited text file.  When 
the raw scores in a datafile are read in, a one-way independent groups, or 
repeated-measures, or split-plot (mixed model) ANOVA is calculated in 
order to obtain the overall variance ratio (Fm) which, along with the 
retrieved critical F[Eα] value, is needed to calculate the maximum number 
of rejectable null contrasts (r). 6  Whether the data come from raw scores, 
or means and standard deviations from independent groups (as noted in 
the previous section of this article), the ANOVA summary table can, 
optionally, be displayed and printed. 
 The only somewhat difficult part of using Rodger’s method is 
constructing sets of J-1 mutually orthogonal (or, minimally, linearly 
independent) contrasts and selecting the one that reflects the scientifically 
meaningful decisions about population parameters that the researcher 
wants to make.  This is not surprising because, from the SPS program 
user’s perspective, that’s just about all there is to using Rodger’s method.  
As  just  described,  the  dual  aspects  of  this  task  have  until  now  been  
fairly closely  connected.    Specifically,  the  researcher  would  previously:  
1) consider alternative interpretations of what the sample means might be 
suggesting about the population parameters (μ’s), 2) manually construct 
orthogonal decision sets to express those possibilities, 3) obtain the 
implied μ’s and the statistics that convey the degree of fit between the 
sample and implied means for each such set, and then 4) establish or risk 
her/his scientific reputation by making very precise and specific claims 

                                                 
6 See section three of Rodger (1974) for an important discussion of the problems 
associated with analyzing a factorially designed experiment with the usual factorial form 
of analysis.  One important consequence of the increased power to detect non-zero 
treatment effects that Rodger’s method affords is that statistically “significant” 
interactions will frequently be found when researchers use it.  Rodger comments as 
follows:  “In such instances the investigator is faced with the difficult problem of 
interpreting these interactions.  This difficulty arises not from the use of F[0.05]; v1, v2 
but from the use of the factorial model (24).  It is foolish to use a model with parts which 
are difficult to interpret.  The problem of interpretation is usually simplified if a one-way 
ANOVA (23) is used and there will be no decrease in β in such analyses using F[Eα]; v1, 
v2.  The researcher is then free to interpret not only contrasts across the μij such as (25), 
(26) and (27), but also simple cross-cell contrasts such as μ11 - μ22 which are easy to 
interpret.  Simple cross-cell contrasts represent the interactions defined by common 
sense, though they are not the interactions defined in the factorial model” (p. 195).  As 
recommended in this quoted passage, SPS uses a one-way ANOVA for factorially 
designed experiments, but it permits the standard two-digit (three-digit) notation for 
identifying the means in a two-way (three-way), repeated-measures or between-subjects 
factorial design to be retained (e.g., μ23 instead of μ6). 
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about the population μ’s based on the implied true μ’s of the decision set 
that was finally adopted. 
 SPS does not require, but it does permit, this usual connection between 
these two components of the Rodgerian task (construction and selection of 
a scientifically meaningful decision set) to be broken.  Like most other 
things that can be learned, constructing mutually orthogonal decision sets 
is experienced as being difficult mainly by those unfamiliar with the task.  
This particular burden (if it is one), though, can be reduced or completely 
obviated by taking advantage of one of the several forms of contrast-
generation assistance that SPS provides.  By offering this help, SPS makes 
using Rodger’s method accessible to every researcher, regardless of 
his/her skill at constructing mutually orthogonal contrasts.  It can 
probably help many newcomers to the orthogonal-contrast construction 
task get better at doing this themselves, or, alternatively, it can certainly 
enable them to avoid learning it altogether. 
 SPS does not impose any type of contrast-generation assistance on 
users of the program, but it can make the task of constructing sets of J-1 
mutually orthogonal contrasts easier, create such sets based on user-
supplied information, or completely automate the process and produce 
atheoretical decision sets that are composed exclusively of “simple” 
contrasts (where all of the contrast coefficients are integers, none of which 
exceeds ±J-1).  Whenever the overall ANOVA variance ratio (Fm) for a 
particular study is equal to or greater than F[Eα], anyone using the SPS 
version of Rodger’s method is expected to construct decision sets by 
themselves, and/or choose some SPS-generated sets, and consider their 
scientific merit.  It is essential that each researcher who uses Rodger’s 
method understand what the individual contrasts in the adopted decision 
set are asserting, and that they collectively be scientifically meaningful.  
Ultimately, however, and regardless of how it was conceived and brought 
into existence, exactly one mutually orthogonal (or merely linearly 
independent) decision set will be adopted.  Those J-1 contrasts, and their 
assigned g values, are the statistical decisions that the researcher has 
chosen to make, and the population parameters that those decisions 
logically imply are the outcome of that study which will be interpreted for 
the consumers of this research. 
 

Concluding Statement 
 
 My Ph.D. dissertation supervisor long ago advised that researchers 
should make scientifically-informed decisions after carefully considering 
the data collected in their study, and take their chances on being wrong.  If 
you make J-1 decisions within the context of Rodger’s method, you will 
get, absolutely free, an explicitly stated set of theoretical population 
parameters (the implied true μ’s) that your particular decisions about 



SIMPLE, POWERFUL STATISTICS 
 

78 
 

population μ’s mathematically entail.  And that’s not all.  The first part of 
the judgment expressed by Williams et al. (1992) that is quoted in footnote 
1 would almost certainly have been true if it had been written nineteen 
years before it was, and it remains just as likely to be a true proposition 
nineteen years later:  “Rodger’s method ... is the most powerful post hoc 
method available for detecting true differences among groups” (p. 43). 
 Rodger’s method would seem a nearly irresistible offer, so why have 
there been so few takers?  A more important question concerns its fate.  
Will Rodger’s method continue to be used by only a few researchers, 
become extinct, or supplant most or all of the currently popular post hoc 
procedures following ANOVA?  This article and the SPS computer 
program constitute an attempted intervention in the competition for 
dominance and survival that occurs among ideas.  My hope is that the 
power and other virtues of Rodger’s method will become much more 
widely known and that, as a consequence, it will become commonly used.  
For this to happen, though, some influential statisticians, as well as the 
powers-that-be at the commercial statistical software companies, are going 
to have to give Rodger’s method some belated attention.  In the meantime, 
anyone who would like to obtain a fairly easy-to-use, Windows-based 
computer program that implements this very impressive method for 
making post hoc statistical decisions can download one at:  
http://sites.google.com/site/SPSprogram. 
 Perhaps the availability of the SPS computer program will help 
Rodger’s method begin to achieve the recognition and use it long-ago 
deserved.  Better ideas and the ‘mousetraps’ they are instantiated in, 
ought, eventually, to come to the fore. 
 
 
Author Note:  I want to express my deep appreciation of Bob Rodger, and to 
thank him for his extensive and patient help over the past several years in 
sharpening both my understanding of his statistical method and this article.  
Correspondence concerning this article should be addressed to Mark Roberts, 
and sent via email to: SPSprogram@gmail.com. 
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