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Abstract: Pathology as a discipline can be traced to the 17th Century, B.C. Over the past 4,000 years,
pathology has experienced four eras: the morphological, immunological, genetic, and molecular eras.
Molecular pathology emerged in 1970s when Southern blot was employed to detect gene rearrangements
in cancer cells. DNA sequencing and polymerase chain reaction (PCR) further revolutionized the diagnosis
of human diseases. Gene profiling array and next generation sequencing are being applied in clinical
diagnostics. While marveling at the advancement of new technologies, pathologists should be aware of the
many challenges over the horizon. These include: 1) atypical morphology and aberrant gene expression
make it more and more difficult to classify cancers; 2) genetic studies that play more and more important
roles in diagnosing diseases; 3) precision medicine which renders morphology-based diagnosis less and
less meaningful; 4) the reality of robust and affordable global sequencing of tumors. With development
of various omics, traditionally morphology-based pathology will face even more challenges. However,
these challenges can also be opportunities for pathologists, such as diagnosing diseases based on biology;
classifying diseases based on therapeutic targets; getting more involved in clinical decision making; and
discovering new biomarkers and therapeutic targets. Seizing these opportunities will be essential for
pathology to play a central role in the 21st Century medicine.
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Introduction

Pathology as a discipline can be traced back to the
17th Century B.C. when medicine was just born
in ancient Egypt [1]. Throughout the history of
medicine, pathology has experienced largely four
eras: the morphological, immunological, genetic,
and molecular eras [2]. Pathologists excel at pattern
recognition; we classify diseases by comparing and
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summarizing distinct morphologies. We also associ-
ated certain diseases with certain pathophysiology,
and thus determining proper treatment. Following
pathologists’ perspectives, clinicians are able to treat
patients more effectively.

The microscope is one of the most important in-
ventions in medicine. With it, we can see microor-
ganisms that killed innumerous people around the
world, identify the components of our body, differen-
tiate benign and malignant cells in blood and tissues,
and classify diseases. Although we have experienced
the monoclonal antibody boom with subsequent im-
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munohistochemistry and flow cytometry, and also
embraced the wonders of genetics and molecular bi-
ology, the microscope remains the required tool for
a pathologist. It is the symbol of pathology; found
in the logos of almost all pathology societies and
groups around the world, the microscope represents
the morphological era. Pathology is not only a med-
ical science, but also a visual art. As pathologists,
we embrace pictures, colors, and patterns because a
new motif indicates a discovery.

Current pathological diagnosis and classification
is still based on morphologic patterns with the as-
sumption that significant correlations exists between
morphology and genetics, genetics and tumor bi-
ology. Following these patterns, oncologists have
designed various therapeutic regimens and carried
out numerous clinical trials. However, with emerg-
ing molecular technologies and the rise of precision
medicine, pathologists face a new world of chal-
lenges and opportunities. This article intends to
raise awareness among pathologists of the potential
setbacks to their profession and the opportunities
that will arise.

Morphology as a Surrogate of Biology

Disease is caused by the loss of biological equilib-
rium of the body due to either intrinsic or extrinsic
factors. Intrinsic factors may include genetic anoma-
lies and lack of potential to cope with the harsh
environment, while extrinsic factors include univer-
sal radiation, chemical exposure, and invasion of
pathogens, etc. To treat a disease, physicians must
restore the biological equilibrium by correcting the
disarrayed biology of the body, as exhibited by mor-
phologic changes. The most noted morphologic
changes in pathology are “rubor, tumor, calor, dolor,
and functio laesa” [Figure 1] [3]. Physicians special-
ized in examining morphologic changes of our body
became pathologists. Pathologists observe visible
biological disarrays with the naked eye and simple
tools, whereas detecting the subtle morphological
changes requires sophisticated instruments [4, 5].

Pathologists begin visual experiences via autopsies,
develop microscopic experiences with scopes, and
acquire their experiences to decode errors in human
genomes with cutting-edge technologies [6]. This
information is utilized by clinical therapists to treat
patients carrying those errors by restoring their bio-
logical equilibrium.

Pathology Provides Targets for Treatment

Precision medicine recently became a popular con-
cept in molecular medicine for cancer treatment [7].
Indeed, targeted therapy has already been practiced
for centuries; for example, in 1549 when Wan Quan
used inoculation to prevent smallpox [8], when
Vasco de Gama used oranges to treat scurvy in the
late 15th century [9], when Banting and Best treated
a diabetic dog with insulin in 1922 [10], and when
imatinib was used to treat chronic myeloid leukemia
(CML) in 2000 [11]. In fact, all these therapeutic
targets: smallpox virus, low vitamin C, insulin defi-
ciency, and presence of BCR-ABL1, are identified by
pathology laboratories; pathology remains the basis
of precision medicine.

Emerging Challenges

Pathology has already experienced numerous chal-
lenges since the day it was conceived and from
the day it became a discipline. Traditionally
morphology-based, pathology has benefited from
emerging technologies in immunology, genetics, and
molecular biology. Although pathology continues
to benefit from the advancement of molecular tech-
niques, challenges arise as modern therapeutics will
depend less on morphology and focus on molecular
targets rather than tumor types.

Challenge 1: Atypical morphology and aberrant gene
expression

Morphology is generally determined by its genetic
make ups, and similar pathology most likely repre-
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Figure 1: Cardinal signs of inflammation: heat, redness, swelling, pain and loss of function. Reprinted by
permission from Macmillan Publishers Ltd: [Nature Reviews Immunology] [2], copyright (2002).

sents a similar abnormality. In this regard, pathol-
ogy is a good surrogate of genetic abnormality. For
example, even in different organs or tissues adeno-
carcinoma behaves differently from squamous cell
carcinoma and is thus managed differently. However,
although we used to believe all the cells in a tumor
arise from a single clone, recent evidence shows that
a tumor is composed of heterogeneous cell popula-
tions. These cells acquire more than one and often
multiple different “hits” during their evolution [12].
Therefore, their morphology may resemble several
entities; because of this, the concept of “grey zone”
lymphoma came into being [13].

Due to the many genetic abnormalities in tumor
cells, aberrant gene expression is commonly seen
in cancer cells and is even utilized for diagnosing
malignancies. For example, aberrant expression of
CD7 in myeloblasts indicates a neoplastic process
[14], and loss of pan T-cell markers is often used to

diagnose T-cell lymphomas [15]. Except for some
tissue-specific markers, studies show that there is no
unique marker for any tumor type and certain mark-
ers are only more commonly expressed in certain
tumors. For example, cyclin D1 was once thought to
be the driving force for all mantle cell lymphomas,
but it is now known that it can be replaced by cy-
clin D2 and Sox11 in the lymphoma development
[16, 17]. Even within the cyclin D1+ mantle cell lym-
phomas, some are more aggressive whereas others
have an indolent clinical course [18]. Additionally,
for decades c-MYC rearrangement was the signature
of Burkitt lymphoma [19], but now c-MYC translo-
cation or aberrant expression has been identified in
many other lymphomas [20–24]. Moreover, Burkitt
lymphoma can be diagnosed without c-MYC rear-
rangement at all [25–27].

Cancer is cancer indeed and they do not behave;
any genes can be aberrantly expressed in cancer
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cells. For example, CD3 and CD20 were considered
the lineage-specific markers for T cells and B cells,
respectively [28, 29], but CD3 can be expressed on
B-cell lymphomas [30] and CD20 on T-cell and NK-
cell lymphomas [31, 32]. Atypical morphology and
aberrant gene expression led to more and more re-
ported grey zone lymphomas [33–39], which poses
a challenge to both pathologists and oncologists.

Challenge 2: Cancer Evolution and Drug Resistance

Like microorganisms, cancers evolve under the pres-
sure of harsh environment. They survive by chang-
ing their appearances, behaviors, and responses to
drugs. If time allows, almost any mutation or genetic
abnormality could occur in cancer. Some mutations
or genetic abnormalities may be lethal to cancer cells,
so they can rarely be detected; whereas others con-
tribute to the cancer growth advantage, and thus
they become the signatures and/or Achilles’s heel
of cancer cells. We may still remember the 2000
Annual Meeting of the American Society of Hema-
tology in San Francisco - almost half of the exhibit
hall displayed abstracts related to imatinib studies.
We were so marveled by having eventually found an-
other wonder drug, shortly after uncovering ATRA
[40]. Moreover, imatinib was not only effective for
treating CML [11, 41], but also suitable for treating
gastrointestinal stromal tumor (GIST) [42], and dis-
eases with PDGFR and FGFR mutations [43]. While
the narcissistic feeling was still lingering, we were
surprised to hear that the cancer cells had already
developed resistance to imatinib [44–47].

With cancer evolving [48], cancer diagnosis should
also evolve and be at the molecular level. Although
the morphology could remain the same, the driving
force might have changed. For example, morpho-
logic patterns are determined by many genes, but
growth advantage could be provided by a single
genetic mutation [49]. Although gene profiling has
been utilized in diagnosing and classifying acute
leukemias [50] and malignant lymphomas [51], the
algorithm follows our tradition of pattern recogni-

tion with many identified genes being irrelevant
to the cancer development. We are now facing
the dilemma either to keep our tradition of pattern
recognition or to change our way of thinking in order
to cope with the challenges of cancer evolution.

Challenge 3: Precision Medicine Demanding Preci-
sion Pathology

With only a few exceptions, modern oncology still
largely relies on toxins in treating cancers. Since
most of the regimens are mutagens as well, we often
cure one cancer while causing another. With whole
genome sequencing being more affordable and new
drugs specifically targeting certain gene products,
we will be able to pinpoint the cancer specific ge-
netic defects and to target these with new drugs.
When rituximib targets CD20 of lymphoma cells,
does it matter if the lymphoma is B-cell lymphoma,
CD20+ T-cell lymphoma, or CD20+ classic Hodgkin
lymphoma? When c-MYC is targeted by a small
molecule for cancer treatment, who would argue
whether the cancer is diffuse large B-cell lymphoma,
Burkitt lymphoma, or something in between? When
Her-2 is detected in lung cancer cells, will clinicians
hesitate to employ Herceptin for therapy? As long
as the target is identified, ibrutinib can be utilized
to treat lymphoplasmacytic lymphomas and chronic
lymphocytic leukemia [52, 53]. ALK+ lymphoma
and lung cancer can be treated similarly with ALK
inhibitors [54]. Anti-CD30 is effective for treating
both ALCL and classic Hodgkin lymphoma [55].
When morphologic, immunophenotypic or even ge-
netic patterns are gradually replaced by specific ther-
apeutic targets, the crisis really comes: microscope
will be collectable and the past glory of traditional
pathology will fade.

Opportunities in the Horizon

Does it sound like crying wolf? But it is the reality
that pathology practice constantly evolves. However,
challenges often go hands in hands with opportuni-
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Table 1: Proposed information in the final diagnosis of cancer

1. Diagnosis according to WHO classification (morphological/immunological/genetic)
2. Therapeutic targets (BCR-ABL, CD20, CD30, CD52, c-Kit, EGFR, Her-2, MYD88, etc.)
3. Pathway markers (PI3K, mTOR, JAK2, BRAF, Erk, NF-kB, etc.)

ties. Indeed, since pathology utilizes morphology as
a surrogate of biology, why not diagnose diseases
directly from biology?

Opportunity 1. Pathway- and network-based diag-
nosis

Cell growth and differentiation depend on its intrin-
sic genetic programming and extrinsic environment.
Signals are sensed by the cell via receptors and con-
veyed to the nucleus through various pathways. In-
teractions between different pathways via functional
nodes form a global functional network [49], which
largely dictates the cell’s fate. Since morphology
and immunophenotype are not always surrogates of
cancer biology [56–58], we should utilize the avail-
able molecular means to identify pathways of the
diseases and make the diagnosis accordingly (Table
1).

Several signal transduction pathways have been
identified to be active in almost all the cancers [59,
60]. They include the PI3K/Akt/mTOR/p70S6K,
Ras/Raf/MEK/Erk, PD-1/PD-L1, and Notch-1 path-
ways [61–64]. Identification of these pathways will
not only help us diagnose cancers, but also provide
therapeutic targets to treat them.

Opportunity 2. Classifying diseases based on thera-
peutic targets

Therapeutic regimens are employed and clinical tri-
als carried out based on classification of diseases.
Classification is useful to clinicians only when it
could guide the therapy for diseases and manage-
ment of patients. When a neoplasm is classified
as classic Hodgkin lymphoma, it indicates that this
lymphoma will likely be managed with ABVD thera-

peutic regimen (with/without radiation) and the
patient will be followed up per the protocol for
Hodgkin lymphoma. When a diffuse large B-cell
lymphoma is diagnosed, the patient will be treated
with R-CHOP, with addition of etoposide if the lym-
phoma has a high proliferation rate. Since most of
the current regimens are toxins, many patients will
develop a secondary malignancy such as myelodys-
plasia after the chemotherapy. Because cancer is
cancer indeed and cancers have common properties,
therapies targeting the prominent pathways and the
specific molecular targets rather than the histologic
type will be more efficient and less toxic. Therefore,

1) Treatments should be tailored to the specific
“hits” of the cancer;

2) Cancers with similar active pathways should be
treated with similar regimens;

3) Therapy (agents/dosages) should be tailored
to each individual based on the bioavailability and
metabolism.

Opportunity 3. More involved in clinical decision
making

Pathologists traditionally play supporting roles for
clinicians because they do not directly interact with
patients. However, since pathologists usually make
the final diagnoses and provide therapeutic targets
(see above), they should be involved more in the
clinical decision making processes - with precision
pathology, they help the clinicians choose the correct
therapies; with pharmacogenomics, they guide the
clinicians with accurate dosages; with prognostic
markers, they predict the clinical outcomes and rec-
ommend the patient follow ups. Pathologists should
be more proactive in helping the clinicians manage
the patients.
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Opportunity 4. Discovery of new biomarkers and
therapeutic targets

With the firsthand specimens from patients, pathol-
ogists are able to employ immunohistochemical
and molecular assays to identify or discover new
biomarkers and therapeutic targets. As all the can-
cers have similar properties, such as genetic abnor-
malities, high proliferation rate, growth advantage,
anti-apoptotic mechanism, and acquired new abnor-
malities that shunt/leak signals through the path-
ways or networks [49]. When an abnormality is
identified in one cancer, it may also be present in
a seemingly unrelated cancer. For example, Her-2
was commonly detected in breast cancer [65], it can
also be detected in several other cancers [66]. Thus,
pathologists should try to identify all the possible
therapeutic targets for clinicians in the diagnosis of
cancers.

Since pathologists have an easy access to patient
specimens, they have an upper hand in the discov-
ery of new biomarkers and potential therapeutic
targets. With more and more knowledge on thera-
peutic targets, pathologists will be able to provide
better diagnostic service.

Summary

Despite all these challenges in the molecular era of
pathology, if pathologists could take advantage of
precision medicine and new technological advances
and seize the above opportunities, we will play more
and more important roles in decision making for
patient management.
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