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CYTOGENETICS AND SYSTEMATICS OF THE ANTHROPOIDEA,
WITH SOME THOUGHTS ON MACROEVOLUTION

Jon Marks

The chromosomes of the primates are potentially extremely powerful
tools for eliciting a deeper understanding of primate systematics. Their
utility lies largely in the fact that chromosomes are of extremely high
heritability (to take an analogy from quantitative genetics: nearly all
chromosonial variation in a populaion is inherited; the only exceptions
being de novo chromosomal mutations). The chromosomes do not exhibit the
plasticity in response to direct environmental pressure characteristic of
gross organismal morphology, which makes them rather "purer" indicators
of genetic affinity. Further, a chromosomal inversion or translocaction
is an effectively unique event, which means that parallel evolution in
the karyotype will be exceedingly rare.

The chromosomes hold a position of rough intermediacy between geno-
type and phenotype. As genes exist in the genotype and are expressed in
the phenotype, they are nevertheless housed in the karyotype. The rates
of genotypic and phenotypic evolution are now generally acknowledged to
be independent, although they proceed in parallel directions (e g , Sarich
and Wilson 1967; Dickerson 1972; Byles 1976). However, frequently
panying that observation is the inference that karyotype change causes
phenotype evolution, based on the recently resurrected "chromosomal repat-
terning" theory of Richard Goldschrnidt (Goldschinidt 19140; Wilson etal.
l974a, 1974b, 1975; Stanley 1979:]146ff.). In this view, a "systemic muta-
tion" will alter the gross morphology of the organism by changing the
expression of genes involved in a karyotype mutation, or "repatterning."
Actually, however, there are few data to support this view; and ver.y many
to contradict it. First, data from clinical genetics overwhelmingly af-
firm that balanced chromosomal alterations (i.e., those which do not involve
either the gain or loss of chromosomal material, but only the rearrange-
ment thereof) do not generally have a detectable effect upon the individual
phenotype (e.g., Moorhead 1976). Second, there are several known instances
of organisms which are morphologically very similar, yet karyotypically
very different; e.g., the muntjacs (Wurster and Benirschke 1970) and the
gibbons (Myers and Shafer 1979, cf. below). Finally, there are cases of
morphologically different organisms with identical karyotypes, for example,
the "homosequential" Drosophila species (Carson et al. 1970; White 1978:
"5).

A much more reasonable view than the Goldschmidt-Wilsor, "systemic
mutation" concept is the recognition, long held among evolutionary cyto-
geneticists, that morphological change and karyotypic change do not pro-
ceed apace. "Thus," we read, "the degree of morphological divergence...
and of the differentiation of the chromosome structure do not necessarily
go hand, in hand in evolution" (Sinnott etal. 1958:2914). And again, "(By
1932), the chromosomes were seen to have evolved according to rules of
their own not clearly related to any properties of the organisms whose
heredity they were supposedly carrying" (Darlington 1978).
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is characterized by chromosomal conservatism while the
latter subfamily is characterized by extensive chromosomal alterations
(tachytely). The recognition of different rates of evolution is hardly
novel or arcane (cf. Simpson 1953)., Yet it seems to elude Bernstein
et al. (1980);

similarity of the G—band pattern
between so many of the baboon chromosomes
and those of man confirms the findings of
Dutrillaux etal. (1978), In contrast,
comparative studies on the gibbon (Hylobates
lar) showed a relatively great evolutionary
distance between the gibbon and man (Miller
1977); this suggests that evolutionary di—
vergence of the baboon and man from a corn-
mon progenitor occurred more recently than
did that of the gibbon and

Bernstein etal.(1980) are able to draw this absurd conclusion be-
cause they are comparing overall similarity of chromosomes, instead of
relying on synapomorphies (shared derived characters) as the only simi-
larities of phylogenetic relevance. This latter methodological axiom
has been popularized in the school of phylogenetic systernatics (Hennig
1966; Wiley 1975; Tattersall and Eldredge 1976; Cracraft and Eldredge
1979) or cladistics. Although there is much more to cladistics which is
of dubious utility in evolutionary studies (i.e,, evolution occurs exclu-
sively by the splitting of lineages; phylogeny logically precedes classi-
fication; all taxa must be monophyletic), the preeminencç of sharedde-
rived characters in constructing phylogenetically significant groups is
an important contribution. Thus Simpson writes:

"I believe that [cladistics] includes a major
contribution to the methodology of phyloge—
netic research, apart from questions as to
hqw phylogeny is to relate to classification.
Greatly oversimplified, the main point is this:
characters of the ancestry of a group of or-
ganisms tend to change in the course of time;
as the group diversifies, the ancestral condi-
tions will tend to be retained in some but not
all the descendants; derived conditions shared
by some but not all members of the larger group
indicate origin from a later common ancestry,
The essential is discrimination between primi-
tive and derived characters at different levels,.

-

Actually, the highly speciose genus Cercopithecus is also tachytelic at
the chromosomal level. This Is related to its arhoreality and most
likely, social structure, and thus supports the ideas developed herein.
I retain the term Cercopithecinae as a matter of convenience, although
any broad statements usually refer to the Terrestrial cercopithecines.
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*Qbviously there ts much vrtety n socil structure among cercopithecine
species, However, this is minimi:zed when compared with the hylobatines
which are wholly different. Thus, although the hamadryas baboon may be
pair-bonded (unlike the other baboons), the major social unit is still
the troop, which is quite unlike anything in the gibbons.

*Although the "dominance effect' (i.e.., one male establishing dominance and
impregnating many of the females) ¡s certainly a form of non-random mating
¡n baboons, this would actually tend to be a force of genetic cohesion be'
tween troops, since the male who establishes dominance ¡s likely to be from
another troop.
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function of time since lineage divergence - and there ¡s certainly no
evi.dence to support such a contention.

The difference in the rates of chromosomal evolution between
these Old World anthopoid primates ¡s most likely related to their popu-
lation structure. The social structure of the cercopithecines ¡s general-
ly characterized by a mobile troop (with one or several males); lack of
pair-bonding between males and females (except for Papîo hamadryas, which
¡s apparently bonded andpolygynous) and gene flow ¡n the form of peri-
pheral maies (Hall and DeVore 1965; Kummer 1968; Crook and Gartland 1966;
Itani 1977). On the other hand, what is known of hylobatine social or-
ganization suggests that they are permanently pair-bonded, nuclear-
family structured, and territorial (Ellefson 1968; Chivers 1972).

The differences insocial organization will play a profound role in
the rate of chromosomal evolution in these lineages for several reasons:
1) the gibbons, being highly territorial, thus have their gene flow
curtailed -- the baboon troop ¡s a highly mobile unit, frequently encoun-
tering other large troops; 2) deme size is substantially larger in baboons,
whose basic social unit ¡s the troop, which makes genetic drift more
unlikely than among gibbons; and 3) the vagility of the baboon troop,
along with the dominance hierarchy and the existence of peripheral males,
makes it likely that the baboon demes would be more genetically homogene-
ous than the gibbon demes. Where a baboon peripheral male can fight his
way into a dominant role in a new social group, and so impregnate many
females, the gibbon male contacts fewer individuals, ¡mpregnates one --
and consequently does not perform qualitatively the same function ¡n
terms of gene flow between groups that the baboon male does.

What we have, then, are near-optimum conditions for thé establish-
ment of chromosomal variants ¡n the gibbons (much genetic drift and little
gene flow) -- and the reverse situation among the baboons, leading to
greater uniformity of populations»* We should expect, then, that the
cercopithecines would be characterized by much more stable and uniform
karyotypes than the gibbons, since their social structure does not promote
the homozygosity and fixation of chromosomal variants that the gibbon
social organization does.

We have, then, forceful evidence to uphold the view that there are
not two levels of evolution as King and Wilson (1975) suggest, but three:
molecular, chromosomal, and morphological -- each proceeding at its own
rate. This recognition has important consequences for the overall synthe-
tic view of evolution.
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it is precisely because of the genetic axiom that the phenotype is an
emergent relative to the genotype that macroevolution is an emergent
relative tomicroevolution,

Furrther, there is persuasIve evidence to suggest that, at least
among the mammals, the speciation process may occur largely according to
the "stasipatric model of M.J.D. White, wherein the agents of reproductive
isolation (i.e., speciation sensu stricto) are suggested to be chromosomal
mutations in peripheral populations (White 1968; Arnason 1972; Wilson
etal. 1975; Bush etal. 1977; Marks, in prep.). Thus, Gould's hierarchy
of evolutionary process (microevolution, speciation, macroevolution) is
likely to be an epiphenomenon of a more fundamental hierarchy of genetic
process (genotypic change, karyotypic change, phenotypic change).

I do not mean to suggest that genotypic change is microevolutionary,
karyotypic change is speciation and phenotypic change is macroevolutionary;
i.e., that the levels of our three—tiered hierarchies map directly on to
each other, Certainly, for example, there is chromosomal and phenotypic
variation within a given species. I am suggesting, however, that Gould's
hierarchy of evolutionary process exists only because there is a funda-
mental genetic hierarchy: the relationships of genotype-karyotype—
phenotype underlie the relationships of microevolution—speciation-macro-
evolution; and since all three elements of the genetic hierarchy evolve at
independent rates, there need be no direct or immediate links between the
emergent tiers of the evolutionary hierarchy.

This suggestion certainly does not invalidate the profound obser-
vation that.evolution is indeed a hierarchical set of processes, any one
of which is not simplistically reducible to another. It simply reinforces
the fundamental tenet of the evolutionary "synthesis" of this century:
that first and foremost, evolutionary change is genetic change. This
should also enable the to attend themselves to pat-
terns of supra—specific diversity, without feeling obligated to bolster
them with specious genetic arguments. The problem of connecting pheno-
typic alteration with a genetic change is the central problem of genetics,
and it should remain so. Evolution is quintessentially genetics, but
the evolutionary effects of the separate levels of the genetic

hierarchy of evolutionary process, any- level of which will have to
contain its own corpus of theory.

footnotes

1 Indeed, at the chromosomal level? it is possible that there may be no
detectable synapomorphies between the gibbons and the other anthropoids,
due to the extreme rapidity of chromosomal evolution in that lineage.
Certainly, however, the distribution of shared evolutionary novelties at
other levels (biochemical, morphological) suggests a closer affinity of
the Pongidae with the gibbons than with the Cercopithecidae,
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2
unfortunately, is hampered by a semantic ambiguity:

on the one hand, the term denotes intra-specific
variation of any sort(J,e., genotypic, karyotypic, phenotypic); on the other handy it

notes specifically the fixation of point mutations in DNA. Gould
(1980a and b) does not distinguish between these two umicroevolutions,u
and it lends an element of vaguity to his discussion, which is neces-
sarily carried over in my discussion, shall treat this matter fur-ther under separate cover.
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