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The logic of the SMART (Sequential Multiple Assignment Randomization Trial) design was 
applied to assess the replicability of original-replicate study pairs for Open Science 
Collaboration (OSC) intervention studies. Within SMART, we utilized both subtests of the 
correspondence test (CT) to assess study pair comparability. First, we implemented a CT 
difference test to determine if an effect size difference between the original study and its 
replicate pair was close to zero; second, we implemented a CT equivalence test to determine 
if the effect size difference of that study pair was within a designated threshold. In Stage 1 
of SMART, each study pair was randomly assigned to one of two alphas (.01 and .05), 
thereby creating two, probabilistically similar subsets of study pairs. Within each alpha 
subset, successful difference tests (test of significance was not significantly different than 
zero) and unsuccessful difference tests were then determined. In Stage 2 of SMART, study 
pairs in each combination of alpha level and successful or unsuccessful difference tests 
were randomly assigned to one of two thresholds (±.25 SD, ±.50 SD). Equivalence tests 
were then conducted for all study pairs in each of these four subsets. Successful equivalence 
occurred when the distance between an original and its replicate pair was statistically 
significantly less than a given threshold. Thus, initial randomization followed by a second 
randomization was used to gauge comparability of each OSC original study and its 
replicate, for two alpha levels and two thresholds. In the first set of results, to mirror the 
common replicability assessment case in which only difference tests are conducted, 16 of 
96 difference tests (16.7%) conducted in Stage 1 were successful. In the second set of 
results, for initially successful difference tests, two thresholds were used to determine the 
percent of study pairs that also passed the equivalence test. Depending on α and threshold, 
8.0%-13.8% of studies successfully passed both difference and equivalence CT subtests. In 
the third set of results, using SMART, after randomization to two α-values and contingent 
on success or lack of success of a difference test, study pairs were randomized to two 
thresholds and a statistical test of equivalence conducted. Using meta-analysis methods 
within SMART-based subsets of study pairs, original-replicate average effect size 
differences were compared to differences in the second set of results. We found a similarly-
sized 10.3% of study pairs passed both CT subtests (nine of 87 study pairs successfully 
passed the difference test at either alpha and successfully passed the equivalence test at 
either threshold). Reflecting the importance of incorporating both CT subtests, of 16 study 
pairs that initially passed the difference test, nearly half (43.7%) failed the equivalence test. 
Thus, for CT success, we found that α choice had little impact, while threshold choice was 
an important determinant. In all three sets of results, the percent of successful replications 
was substantially smaller than the 36% of OSC replicates that were statistically significant. 
To confirm this study’s replicability, we found very similar patterns of CT success and lack 
of success for two, SMART-based tables, one for alpha = .01 and one for alpha = .05. The 
current research extends the utility of CT established by Steiner and Wong (2018) in which 
results were based on simulation data. 
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Despite the central role of replication to the foundation of scientific 
inquiry, favorable evidence for replicability has been mixed. Worse, within 
the last decade multiple sources have characterized replication as in “crisis” 
(e.g., Anderson and Maxwell, 2016; Gelman & Vazire, 2021; Williams, 
2019). This characterization reflects the selection of a wide range of criteria 
to gauge replicability, and currently no clear consensus exists that identifies 
which measures best judge replication success. Current measures used to 
assess replicability include those in the exemplary Open Science 
Collaboration (OSC) whereby statistical tests were used to determine the 
percent of replicates studies that were significant in the original direction 
(Open Science Collaboration, 2015) and Bayesian methods (Camerer et al., 
2018) were used to judge whether replicate-original study differences 
yielded evidence favoring an effect or favoring the null hypothesis of no 
effect.  

Given the lack of a single, best measure of replicability, Anderson and 
Maxwell (2016) suggested that researchers report multiple methods. The 
authors described five tactics in which confidence intervals might be utilized 
to better judge the consistency or inconsistency of effect-size differences 
between original and replicate pairs. Fabrigar and Wegener (2016) 
preferred to focus upon meta-analysis procedures that combined effect sizes 
of original and replicate studies. Adding to the set of elements that influence 
replication success, Anderson and Maxwell (2017) noted that effect sizes in 
original studies were likely to be overestimates of population effects, given 
that publication bias existed in the original study but not in the replicate. As 
a partial remedy, Schäfer and Schwarz (2019) argued that preregistered, 
replication studies would be less likely to show effect size inflation and that 
sample sizes in replication studies should be increased to reflect statistical 
power comparable to that of originals (see also, Schauer and Hedges, 2020).  
 Schauer and Hedges (2021) examined multiple replicability measures to 
address comparability of original-replicate pairs. These authors introduced 
false success rate and false failure rates to assess replicability for multiple 
equivalence thresholds (.20, .50, and .80 SDs). Using OSC data, for both 
confidence interval overlap and prediction interval, they found high, false 
success and false failure rates. For correspondence in sign and statistical 
significance, only for power > .50 in the original study did higher power in 
the replicate reduce false failure rate. 

As Schauer and Hedges (2021) had placed particular emphasis on the 
role of statistical power, they noted that small sample size was especially 
salient when a single, original-replication study pair was examined. 
Fortunately, this “n = 2” argument was avoided in the current study, given 
the large set of original study-replicate pairs (100) in the OSC database.  
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Open Science Collaboration 
 

Perhaps the most extensive, direct replication project was performed by 
the Open Science Collaboration (2015) research team. A total of 100 
experimental and correlational psychology study pairs were analyzed, and 
270 authors contributed to the project. Replication materials and 
procedures were intended to duplicate the design, analysis, and conduct of 
each original study.  

In OSC, three journals were selected to represent prominent research in 
cognitive and social-personality psychology. Given the lack of consensus of 
a best, single indicator of replicability, multiple measures of replication 
success were reported, including: statistical significance of the replicate (in 
the same direction); determination of whether the original effect size was 
within the 95% confidence interval of the replicate; the difference between 
average original and average replicate effect sizes; a meta-analytic estimate 
that combined effect sizes for each original-replicate pair; subjective 
assessment of replicability; and correlates of replicability (e.g., was the 
effect size magnitude of the original study predictive of replication 
success?).  

Despite redundancy in methods and materials, “[a] large portion of 
replications produced weaker evidence for the original findings” (Open 
Science Collaboration 2015, p. 943). A scant 36% of replicates were 
statistically significant in the original direction, only 47% of the 95% 
confidence intervals of replicate studies contained the original’s effect size, 
and the average magnitude of replication effect size was reduced to 
approximately half that of the original’s effect size. These findings added 
fuel to the pessimism regarding replication success. 

 
An effect size measure used for subtests of the correspondence 
test 
 

The current paper used the effect size difference between an original 
OSC study and its replicate as the basis for assessing replicability. Two tests 
were conducted with this effect size difference; a difference test and an 
equivalence test. Steiner and Wong (2018) incorporated both tests to 
establish the correspondence test (CT), and both tests must be successfully 
passed to successfully achieve correspondence. More formally: 1) the 
difference between the effect size of the original and replicate study is not 
statistically significantly different from zero; and 2) that same effect size 
difference is statistically significantly smaller than some a priori constant 
(threshold) as evaluated in the equivalence test. Thus, CT seeks to establish 
that the effect size difference between an original-replicate pair is small 
(near zero) and not too large (less than some threshold). While an effect size 
difference of .25 SD may be statistically non-significantly different than zero 
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(perhaps due to small sample size), its apparent, large magnitude should 
not be too big (effect size difference must be less than the threshold). 

 
Correspondence test 
 

In the context of an historically static set of methods for conducting 
replications, building upon previous work by Tryon (2001), the current 
research extends the Steiner and Wong (2018) approach to a multi-study 
context as these authors had introduced CT in a within-study comparison 
(WSC) context to judge outcome similarity for a single RCT and a single 
quasi-experimental analogue rather than to address comparability of 
original-replicate results for a large set of studies. A primary strength of CT 
is that it utilizes two statistical subtests and that low (or high) statistical 
power is not a simultaneous advantage of both subtests. For CT, the 
difference test posits a nil difference (literally, a difference of zero) between 
the original study and the replicate, then judges whether the replicate was 
“not too far” from the original (success occurs when one “fails to reject” the 
nil). However, a critical problem with the difference test is that low 
statistical power may lead to no-difference findings. A conclusion that the 
difference between the original-replicate pair was not significantly greater 
than zero could be attributable to small sample size. 

To counteract this weakness, an equivalence test is also conducted. This 
portion of the CT requires an a priori threshold. That threshold choice can 
focus on a theoretical dimension (e.g., Is the quasi-experimental bias too 
large?) or the choice can address a practical, policy-relevant difference in 
results (e.g., Are replication results “close enough” to originals? Can we 
accept replication findings and implement the interventions more 
generally?).  

For an equivalence threshold of ±0.10 SD, the composite null hypothesis 
posits that the original-replicate effect-size difference is greater than or 
equal to 0.10 SD, and less than or equal to -0.10 SD (two, one-sided tests). 
The composite null hypothesis is rejected when the difference is statistically 
significant, within the ±0.10 SD range, thus concluding replication and 
original ESs are “similar enough.” Given that the two subtests effectively 
counterbalance the impact of low (or high) power, CT’s multiple subtest 
feature also acts as an antidote to the single replicate (n = 2) weakness noted 
by Schauer and Hedges (2021).  
 In summary, to assert correspondence, the difference test must be 
statistically non-significant (effect size difference is close to zero), and the 
equivalence test must be statistically significant (effect size difference is not 
too large). Inclusion of both difference and equivalence subtests in CT is 
intended to not allow a given study feature to simultaneously advantage 
both subtests. For equivalence, low power works against statistical 
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significance; for difference, low power works in support of comparability (as 
the aim is to fail to reject the nil hypothesis).  
 
Four correspondence test outcome categories 
 

The CT is successful when both difference and equivalence tests are 
successful. Of the four possible combinations of test results, two may lead 
to ambiguity. When the difference test is successful (non-significant 
difference perhaps due to small sample size) but the equivalence test is not 
successful (non-significant, perhaps due to a small threshold), the CT yields 
an “indeterminant” result. This outcome is particularly problematic, since 
indeterminacy can only be concluded if an equivalence test has been 
conducted; unfortunately, most researchers do not test equivalency. 
Without an assessment of equivalency, a successful difference test is 
deficient. 

The second ambiguous case occurs when the difference test is 
unsuccessful and statistically significant (there is large sample size which is 
bad for a successful difference test) and the equivalence test is successful 
(there is a large threshold which is good for a significant equivalence test). 
Here, a “trivial difference” results; the difference between original and 
replicate may be small, but CT’s conclusion is suspect due to large sample 
size and large threshold. Case four is unambiguous; CT fall into the 
“difference” category as both CT tests are unsuccessful. The difference test 
is significant (the original and replicate are too far apart), and the 
equivalence test is nonsignificant (original and replicate are not close 
enough to each other). 

This study closely examines two of these four cases. First, it addresses 
factors that contribute to successful correspondence. Second, it reveals the 
extent of mis-inference stemming from successful difference tests followed 
by unsuccessful equivalence tests (indeterminacy). Technical details 
regarding the equivalence test are presented in a later section. 

 
Overview of the SMART design  

 
A SMART (Sequential Multiple Assignment Randomized Trial) design 

(Murphy, 2005) applies two randomizations, in sequence. In SMART, a 
second randomization follows the usual random allocation of an 
experiment. After initial randomization, effect size results for treatment and 
control group participants are compared to a pre-established standard. 
Scores above (or below) the standard are judged successful and those below 
(or above) are deemed unsuccessful. For all four subgroups, random 
allocation is applied, resulting in eight equivalent subgroups. 

In the SMART/CORR application of the general SMART design used in 
this study, the correspondence test was implemented. In SMART/CORR, 
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individual “participants” are original-study replicate pairs, not persons, as 
reflected in the graphic, below. Two subgroups of OSC original-replicate 
study pairs, G1 and G2, result from random assignment (R) in Stage 1. Based 
on some quantitative cut score, successful (S) and unsuccessful (U) 
subgroups emerge for both G1 and G2 (yielding four subgroups: G1S, G1U; 
G2S, G2U). Study pairs in each of these four subgroups are then randomized 
(R) during Stage 2, resulting in eight subgroups, H1–H8, each yielding either 
a successful or an unsuccessful outcome. (Note: randomized, subset pairs 
such as H1 and H2 are probabilistically similar; subset pairs such as H1 and 
H3 may not be not similar.) 

Thus, in the SMART/CORR, individual, original-replicate OSC study 
pairs serve as units of analysis rather than individual participants. This 
SMART/CORR adaptive strategy appears as: 

 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
The original-replicate pairs of the current study utilize OSC treatment 

studies which were randomly divided into two groups (G1 and G2) during 
Stage 1. Based on a prespecified alpha level (for the difference test), 
successful (S) and unsuccessful (U) subgroups emerge for both G1 and G2), 
yielding four subgroups. OSC study pairs in each of these subgroups were 
rerandomized (R) during Stage 2, resulting in eight subgroups, H1–H8, each 
yielding successful or unsuccessful effect size difference outcomes 
according to a prespecified threshold (for the equivalence test). 

Most SMARTs determine initial treatment success during Stage 1 based 
on the size of the difference between treatment and control group. Second-
stage interventions are then used to maintain or alter the course of initial, 
successful and unsuccessful treatment. However, in this study, the 
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definition of success at each stage was determined by the results of a 
statistical test. We randomly assigned study pairs to two, different alpha 
levels in Stage 1 (for the difference test) and then established success for 
study pairs in each subgroup. Subsequently, we randomly assigned study 
pairs to two, different thresholds in Stage 2 (for the equivalence test) and 
then established success within each subgroup. 

Thus, in SMART/CORR, one goal was to assess the impact of randomly 
assigned conditions rather than treatments where conditions (alpha levels 
and thresholds were assigned to study pairs, not to individuals. In Stage 1, 
each study pair was randomized to either a .05 or a .01 α-level to test 
differences for statistical significance. Study pairs were categorized as 
having successfully or unsuccessfully passed difference tests, and meta-
analytic methods were used to calculate average effect size differences. We 
expected that smaller p-values would yield more successful difference tests 
(more statistically non-significant differences). 

In Stage 2, equivalence thresholds of ±.25 SD or ±.50 SD were 
randomized to study pairs for successful or unsuccessful difference tests, for 
two, Stage 1, α-values. An equivalence test was conducted for each resulting 
subgroup, again using meta-analytic methods to assess average effects. It 
was expected that larger thresholds would yield more successful 
equivalence tests (more statistically significant differences within a given 
threshold). Successful CTs were based on coincident success of both 
difference and equivalence findings. Of particular interest was the 
combination of results when the difference test was successful and the 
equivalence test was unsuccessful. These results reflected indeterminacy 
and identified instances in which replication conclusions based only on 
difference tests may potentially be flawed. In Figure 1, an overview of 
SMART/CORR is provided, along with an outline of related methods and 
results. 
 In the far-right portion of Figure 1 labelled “Results,” in the top tab, the 
“Standard Approach” yielded 87 results with a successful or unsuccessful 
correspondence test for each original-replicate OSC pair, using a given α-
value for the difference test and a given threshold for the equivalence test. 
In the middle tab, SMART/CORR yielded measures of replicability success 
for multiple subsets of randomly assigned study pairs. SMART/CORR 
applied meta-analytic techniques to assess effect size in subsets and to 
gauge the impact of α-value and threshold on success of the correspondence 
test. In the bottom tab, OSC (2015) results were reported. 
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Figure 1. Overview of SMART/CORR study design.  
 

 
 
 
Choice of α-values for difference test and thresholds for 
equivalence test 
 

For SMART/CORR difference tests, two, common but arbitrary α-levels, 
.05 and .01, were chosen to test statistical significance. Each alpha value 
produced a 2 x 2 correspondence table in which individual cells represented 
each of the four CT results. Second, while a priori choice of thresholds for 
the equivalence test was arbitrary (Kruschke, 2018), the initially selected 
threshold values, ±0.10 SD and ±0.20 SD, require further explanation.  

The value ±0.05 SD used by the What Works Clearinghouse for baseline 
equivalence in an RCT (Institute of Education Sciences, 2020) was first 
considered as a stringent threshold. However, this small value was judged 
to likely produce too few, successful CT tests. Instead, the ±0.10 SD 
threshold was tentatively chosen.  
 Kruschke (2018), in designating a range of equivalence thresholds 
considered “good enough” for practical, policy-related decisions (a region of 
practical equivalence: ROPE), characterized an effect size of 0.20 SD as 
small (see Cohen, 1988), then argued for an arbitrary threshold equal to half 
of this small effect. In a meta-analysis of within-study comparison (WSC) 
findings that compared results in RCT and RD designs addressing the same 
research question, Chaplin et al., (2018) typically used 0.10 SD as a gauge 
of practical, outcome consistency across designs. Steiner and Wong (2018) 
utilized SD values ranging from 0.10 to 0.60 SD in their simulation studies 
but judged SDs of 0.10 or lower to be “reasonable” to judge equivalence 
“because it minimizes the probability of an incorrect equivalence 
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conclusion.” (p. 28) To assess false failure and false success replication rates 
in OSC data, Schauer and Hedges (2021) used substantially-sized 
thresholds: .20, .50., and .80 SDs. Clearly, threshold magnitude varies 
widely depending upon researcher preference and study-specific questions.  
 Given unclear guidance regarding threshold choice based on the existing 
literature, an empirically-based step was used to better guide this choice. 
Consistent with Bonett’s (2020) recommendation, multiple thresholds were 
considered in the current study. This empirically-based step reduced the 
chances that only a very small percent of replicates would pass both the 
difference subtest and the equivalence subtest of a CT, with the ±0.20 SD 
lenient threshold. 

Preliminary analyses were performed, and equivalence test results are 
shown for both successful and unsuccessful difference tests (Table 1). The 
category “conceptual” reflected reliance on literature-based, threshold 
recommendations (±.10 and ±.20 SD). As the number of successful 
difference study pairs (at α = .05) with a successful equivalence test (at α = 
.05) increased between ±.20 and ±.25 SD, the slightly larger ±.25 SD was 
used as a stringent threshold; twice that value, ±.50 SD, was chosen as a 
lenient threshold, along with a still larger ±.75 SD threshold. The term 
“empirical” designated the three largest thresholds used to determine 
counts of successful and unsuccessful difference and equivalence tests.  
 
A theoretical framework for the application of design to a 
replication context 
 

Recently, Steiner et al., (2019) presented a research design framework 
within which one could assess replication efforts. After defining replication 
as “a research design that tests whether two (or more) studies produce the 
same causal effect within the limits of sampling error” (p. 280), the authors 
provide five assumptions under which successful replication is likely to 
occur. These assumptions include: 1) close comparability of contrasting 
conditions and measures used in the original and replicate; 2) the same 
causal estimand was employed to calculate effects in both original and 
replicate; 3) correct identification of causal estimands (e.g., randomization 
correctly conducted, little to no differential attrition in both studies); 4) 
unbiased estimation of causal estimands; and 5) correct reporting of study 
outcomes.  

This theoretical framework was applied to the current context in which 
methodological redundancy of the original-replicate OSC study pairs had 
been planned. In these direct replications, researchers went to great lengths 
to   ensure  that  general  methods,   particular  interventions,   and  specific  
measures used in original studies were closely followed in replicates. The 
analyses in this study yielded results redundant with or calculable from 
statistics reported in the publicly available, OSC archive. 
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Table 1  
Cells display cumulative number and cumulative percent of successful 
equivalence tests, for conceptual- and empirical-based thresholds, based 
on successful (n = 16) and unsuccessful (n = 80) difference tests  

 Equivalence Test  Difference Testa: n=96 

Threshold (SD) Successful: n=16 (%) Unsuccessful: n=80 (%)   

Conceptual    

±.10     0 (0.0)     0 (0.0) 

±.20     1 (6.3)     3 (3.8) 

Empiricalb   

±.25   4 (25.0)     5 (6.3) 

±.50 10 (62.5) 25 (31.3) 

±.75 13 (81.3) 40 (50.0) 

Note: Preliminary results were conducted to inform threshold choice. 
Equivalence tests stem from two, one-sided, 97.5% confidence intervals. 
SD = standard deviation. 
a Conducted at α = .05, across replicates. 
b Since counts are cumulative, to ensure independence for Row 1 and Row 
2, Fisher’s Exact Test was conducted (p = .393) on empirical counts in the 

2 x 2 matrix [
4 5
6 20

].  

Unbiased estimates from well-done experiments and estimates from 
replicate experiments were calculated in the same way (assumption 4). 
However, there was a slight possibility that differences in original and 
replicate participants and in the precise manner that measures were 
implemented in original and replicate settings might have altered study 
outcomes (assumption 1). While the effect size causal estimand (an average 
treatment effect, when experiments were conducted) was the same in the 
OSC replicate pairs as in this study (assumption 2), a primary purpose was 
to determine if the CT yielded replicability findings consistent with those of 
OSC. Importantly, identification (assumption 3) was likely established, as 
selection bias was not in question; most originals and their replicate pairs 
were experiments. Reporting quality of the OSC was high; few instances of 
missing data were present in the OSC (assumption 5). Of the original studies 
in the OSC database, only three did not provide sufficient information to 
calculate effect sizes. In summary, when efforts were made to directly 
replicate original studies, it is reasonable to conclude that replication 
assumptions were closely adhered to. 



YEATON AND VELASQUEZ 
 

51 
 

In this application of SMART, random assignment created covariate 
equivalence by expectation in Stage 1. However, inference made by 
comparing successful or unsuccessful Stage 1 subgroups (e.g., G1S and G2S) 
must be made cautiously, as covariate values (e.g., follow-up length) may be 
confounded across studies.  
 In Stage 2, comparisons within each of the four randomized pairs of 
conditions were likely to produce unbiased estimates. For example, a 
comparison of H1 and H2 estimates will probabilistically be unbiased. 
However, comparisons of other group results (e.g., subsets H1 versus H5) 
may not be unbiased due to between-condition confounding (though both 
groups were successful in Stage 1, success reflected different α-level 
conditions). 
 
Study Aims  
 

This research served multiple purposes. First, empirical data based on 
CT were used to evaluate replicability of the large set of OSC studies. Our 
empirical results extended CT’s range of applicability previously based on 
simulation findings reported by Steiner and Wong (2018).  

The second purpose reflected the contingent nature of SMART by 
determining the rate of indeterminacy; first a successful difference test 
occurs, then an unsuccessful equivalence test follows. This case is 
particularly important as most researchers conduct only a difference test.  

A third purpose of this study was enabled by the two-stage structure of 
SMART. The random allocation features of SMART yielded unconfounded 
contrasts between probabilistically similar subsets of study pairs for 
successful and unsuccessful difference tests with different α-values (Stage 
1) and for successful and unsuccessful equivalence tests with different 
thresholds (Stage 2). Further details regarding the SMART/CORR 
application are provided below.   

 
Linking study aims to study practices 
 

The first aim was achieved by determining the probability of successful 
and unsuccessful difference and equivalence tests in OSC study pairs. These 
subtest results were subsequently used to determine the rate in which study 
pairs fell into four CT outcome categories.  

The second aim focused upon the probability of unsuccessful 
equivalence tests. As noted, indeterminacy occurs when the difference test 
is successful and the equivalence test is unsuccessful. As this difference-
test-only case is common, a gauge of the degree of typical mis-inference 
becomes possible by adding the equivalency test. 

The third study aim was accomplished via the SMART/CORR design. 
How often is the difference test successful, for different alphas (Stage 1). 
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How often is the equivalence test successful, for different thresholds, 
contingent upon successful and unsuccessful difference study pairs (Stage 
2).  

 
Methods 

 
Re-analysis of Open Science Collaboration data 
 

Data for this research were obtained from the Open Science Framework 
(OSF) (https://osf.io/fgjvw/). In this SMART/CORR application, for the 
100 pairs of original and replication studies used in the OSC database, 96 of 
these pairs provided effect size measures or relevant statistics to enable 
calculation of standardized mean differences for the d statistic. The 
statistical software R v. 4.0.1 (R Core Team, 2021) was utilized to randomly 
assign each OSC original study and its paired replicate to conditions (two α-
values and two equivalence thresholds), to generate graphical displays, and 
to conduct statistical analyses. For each randomization, two sets of study 
pairs were created (without replacement) by applying the set. seed function 
along with the sample function in R.  

In summary, in this SMART/CORR application of SMART, the utility of 
CT was extended to a multiple-study context rather than limited to a single 
original study and its replicate pair. To gauge successful replicability: 1) a 
CT was conducted for each OSC original study-replicate pair to assess the 
replicability of the entire dataset; 2) SMART/CORR was applied to assess 
the impact of α-value and threshold upon successful difference and 
equivalence tests for probabilistically similar subsets of study pairs.  
 
Identifying and addressing outliers in OSC data 
 

In SMART/CORR, to minimize the impact of outliers on cell means and 
differences between cell means from the set of 96 original-replicate OSC 
pairs, outliers were removed. Diagnostic methods described by Viechtbauer 
and Cheung (2010) were employed to detect outlier and influential cases in 
the meta-analytic, random-effects models conducted at Stages 1 and 2 of 
SMART/CORR. At each stage, influential studies were first identified using 
case deletion diagnostics based on Cook’s distance and DFFITS statistics 
(regression-based measures for assessing potential outlier or influential 
cases adapted to the meta-analytic context). Studentized deleted residual 
statistics were then examined to identify outliers from among these 
influential studies. Effect sizes with residual statistics values greater than 
the absolute value of 1.96 in either Stage 1 or Stage 2 of the SMART/CORR 
were identified as outliers, resulting in eight studies which met this 
criterion. A ninth study was identified as an outlier as it had the same 

about:blank
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studentized residual value (-1.94) in Stage 1 as a study with values of -1.94 
and -2.01 in the two SMART/CORR stages. 
 In the primary analyses shown in Figure 3 and Table 2, these nine 
outliers were omitted from the set of 96 study pairs. A sensitivity analysis 
was conducted in which results for the 87 study pairs were compared with 
results for all 96 study pairs. Differences in tests of statistical significance 
and effect-size estimates for the resulting subsets of study pairs were noted.   

 
Calculation of effect size difference and standard error for OSC 
study pairs 
 

Here, computational details are provided for the specific procedures 
implemented to calculate effect size difference and standard error, for each 
OSC original study and its replicate.  

Initially, the Fisher’s z correlations of original and replication studies 
reported in the Open Science dataset were transformed to r correlations and 
then to d effect sizes. A d effect size estimate was calculated for each original 
and replication study in 96 pairs of studies. For each original and replication 
pair of studies, the difference between d effect size estimates is calculated 
by diff = dR − dO where dR and dO are d effect size estimates in each pair. 

The variance of diff is given by vdiff = 
nR  + nO

nRnO
+

diff
2

2(nR + nO)
, where nR and nO are 

the sample sizes of the groups in the replication and original studies 
(Borenstein, 2009).  The standard error of diff is the square root of vdiff, 

sediff = √vdiff. The d-based, effect size results were independently verified by 

comparing them to those in the OSC dataset. The weighted average of d, 
based on 96 studies, was -0.46. The absolute value of this d, when 
transformed to an r effect size, yielded 0.224, which was close to the overall 
r-based difference of 0.206 found in OSC, based on 97 studies.  

 
SMART/CORR application of effect size difference measures in 
Stage 1 and Stage 2  
 

A two-stage process was implemented to randomly assign OSC, original-
replicate pairs of intervention studies to cells in the SMART/CORR.  In 
Stage 1, 96 study pairs were randomly assigned to the two α conditions (.01 
and .05) for the difference-test component of the CT. The nil and alternate 
hypotheses of the difference test are given by H0: δR - δ0 = 0 and HA: δR - 
δ0 ≠ 0, where δR and δ0 represent population d effect sizes for the 
replication and original studies, respectively.  The t-test for the difference 

test is given by t = 
diff

sediff
. For each study pair, a difference test was conducted 

at the assigned α, .01 or .05. Failure to reject the nil hypothesis yielded a 
“successful” difference test.  
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In Stage 2, study pairs in the “successful” and “unsuccessful” cells of the 
two α conditions of the difference test were randomly assigned to stringent 
and lenient threshold conditions of the equivalence-test component of CT. 
The composite null hypothesis for equivalence states that the absolute 
difference between the replication and original effects is larger than or equal 
to the selected threshold h: H0:|δR - δ0| ≥ h. This null hypothesis is also 
conceptualized as two one-side null hypotheses: H01: δR - δ0 ≤ -h  and 
H01: δR - δO   ≥ h, where -h and h are the lower and upper bounds of the 
selected threshold.  One test rejects the null if the difference is larger than 
the lower bound of the threshold: HA1: δR - δ0 > - h and the other rejects the 
null if the difference is smaller than the upper bound of the threshold: HA2: 
δR - δ0 < h. The t-test statistics for the two one-sided tests are given by tL= 
diff -(-h)

sediff
 and tU = 

diff- h

sediff
. For study pairs, the equivalence test was conducted at 

α = .05.  Rejections of both null hypotheses establish original-replicate 
equivalence. 

For different α-values and thresholds, successful and unsuccessful 
outcomes for difference (Stage 1) and equivalence (Stage 2) subtests of CT 
are shown within relevant cells of SMART/CORR. For samples of study 
pairs within each cell, meta-analytic methods were used to calculate 
standardized, mean effect size (d) differences and 95% confidence intervals. 

 
 

Results 
 

Preliminary analyses: using successful difference tests to 
explore threshold choice 
 

For preliminary analyses (n = 96), results for 16 study pairs (16.7%) that 
had successfully passed the difference test at α = .05 are displayed in Figure 
2. The primary purpose of the initial analyses was to provide an empirical 
basis for subsequent choice of thresholds as these analyses established the 
number of successful equivalence tests for different combinations of alphas 
and thresholds. This preliminary step aimed to avoid choice of thresholds 
that led to few, successful equivalence tests and, therefore, few successful 
CTs.  

The four graphics in Figure 2 portray effect size difference for two, 
randomly assigned α-values and two, randomly assigned thresholds. In the 
rows, difference tests were conducted at either α = .01 (boxes, plots in row 
one) or at α = .05 (diamonds, plots in row two). In the columns, equivalence 
tests were conducted at either ±0.25 SD in column one or ±0.50 SD in 
column two; vertical lines represent these thresholds. The dashed, 
horizontal lines represent 99% (row one) and 95% confidence intervals (row 
2) for nil-hypotheses that test difference. The solid, horizontal lines (row 
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one and row two) represent 90% confidence intervals for two, one-sided 
tests for equivalence, at α = .05. 
Figure 2. Initial examination of empirical mean differences (replication ES 
– original ES) and confidence intervals yielded 16 study pairs passing the 
difference test (α = .05). Equivalence tests were then conducted on these 
successful difference test study pairs.   
 
 

 
 
Each α-value was randomly assigned to 48 study pairs. Successful 

difference test study pairs for both α = .05 and α = .01 were identified, 
followed by random allocation to equivalence tests at ±0.25 SD and ±0.50 
SD thresholds. (Naturally, preliminary analyses that included study pairs 
for difference tests successful at α = .05 would also be successful at α = .01.)  

The non-statistically-significant effect size difference between these two, 
alpha-level subsets of study pairs (results not shown) reflected successful 
random allocation. In all but three cases, differences were negative, 
reflecting smaller effects in replicates than in originals.  

Across the four quadrants of Figure 2, nine of the 16 study pairs (56.3%) 
that had produced a successful, difference test were also successfully 
equivalent. As expected, the largest number of study pairs (n = 5, upper 
right quadrant) fell within the CT cell that combined the more lenient 
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threshold (±0.50 SD) and the smaller alpha (.01). Nine study pairs fell 
within the .01 alpha (row 1) while seven fell within the .05 alpha (row 2). 
Eight study pairs fell in both column 1 (threshold ±.25) and column 2 
(threshold ±.50). 

As summarized in Table 1, for 96 study pairs, it was possible to 
determine how many of the 16 successful difference test study pairs would 
then successfully pass the equivalence test for two conceptual and three 
empirical thresholds. Starting at ±0.20 SD, larger thresholds substantially 
increased the number study pairs that successfully passed the equivalence 
test.  

For conceptual thresholds, using two, one-sided tests with α = .025, one 
study fell within the ±0.20 SD threshold, while none fell within ±0.10 SD. 
A slightly larger, empirical threshold (±0.25 SD) yielded additional, 
successful equivalence tests (n = 4; 25%). A total of 10 of 16 study pair 
differences (62.5%) fell within the ±0.50 SD threshold, and 13 of 16 (81.3%) 
fell inside the ±0.75 SD threshold. Thus, in these 16 successful difference 
study pairs, for thresholds ranging from ±.10 to ±.75, the percent of study 
pairs that successfully passed the equivalence test ranged from 0.0% to 
81.3%. Fisher’s Exact Test found no association between counts of 
successful and unsuccessful outcomes for equivalence and difference tests 
(p = .393). 

For unsuccessful difference tests, the number and percent of successful 
equivalence tests was determined for these same thresholds: ±.10 (0/80 = 
0%); ± .20 (3/80 = 3.8%); ±0.25 SD (5/80 = 6.3%); ±0.50 SD (25/80 = 
31.3%); and ±0.75 SD (40/80 = 50.0%). As threshold increased, the percent 
of unsuccessful equivalence tests also increased. For each of three 
empirically-based thresholds, percent of successful equivalence tests was 
substantially larger for replicates exhibiting a successful difference test vs. 
those with an unsuccessful difference test. 
 
Results for “standard approach,” using 87 correspondence tests, 
without SMART  
 

Without SMART randomization, the “standard approach” results (not 
shown in tables or figures) reflected the usual way in which a CT would be 
conducted. That is, the first study pair was classified as successfully or 
unsuccessfully passing the CT, and this process was repeated for each of the 
remaining 86 study pairs. Results were based on an aggregate of these 87 
study pairs. By way of validation relative to the 97 OSC study pairs, when 
the r-based difference between the sets of original (-0.403) and replicate 
studies (-0.197) was converted to a d (-0.421), that d result was comparable 
to the overall difference, d = -0.450, based on 87 study pairs. 

A count of successful CT tests was made for each alpha-threshold 
combination. For ±0.25 SD, for an α = .01 difference test, seven study pairs 
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passed the CT; for that same strict threshold, seven study pairs also passed 
the CT, for α = .05. For a lenient ±0.50 SD threshold, counts were 12 and 11, 
for α = .01 and .05, respectively. For each of the four combinations, the 
average effect size difference between original and replicate studies was not 
statistically significantly different than zero. In the case least likely to yield 
replication success (α = .05, threshold = ±0.25 SD), seven study pairs 
(8.0%) passed CT; in the context most favorable to replication success (α = 
.01, threshold = ±0.50 SD), 12 study pairs (13.8%) passed CT. 

 
Results for subsets of study pairs in CT cells, using SMART/CORR 
 

The SMART/CORR design flow of 87 original-replicate study pairs is 
displayed in Figure 3. This flow followed the structure of SMART/CORR in 
which random allocation occurred twice, once per stage. Two CT tables were 
created, one using α = .01 and an analogous table using α = .05. Cellular 
results within each table were based on successful and unsuccessful tests of 
equivalence for two thresholds, depending upon successful and 
unsuccessful difference tests. SMART/CORR’s contingent structure 
allowed an assessment of the probability of the critical case of 
indeterminacy (a successful difference test followed by an unsuccessful 
equivalence test). 

In Figure 3, we used the following notation: Avg ES diff was the average 
effect size difference between each pair of replication and original study 
(subtraction in this order), CI was confidence interval, <R> was 
randomization, S was successful replication, U was unsuccessful 
replication, cells I– IV were for the difference test in Stage 1, and cells A1 – 
D2 were for the equivalence test in Stage 2. An * reflected statistical 
significance,  p =.05 or  p = .01,  for  difference  and  p = .05  for  equivalence. 
For the equivalence test, the null hypothesis was that the absolute effect size 
difference between replication and original study was greater than the 
threshold. For the difference test, the nil hypothesis was that the effect size 
difference between the replication and original study was zero. 

To clarify placement of study pairs into the cells of one correspondence 
table in Figure 3 using SMART/CORR, we describe the allocation sequence 
that produced entries falling into = .01, nine (I) successfully passed the 
difference test; for 35, the difference test was unsuccessful. Four (A1) of the 
nine successful difference test study pairs were randomly assigned to a 
stringent threshold, whereby one study pair (A1(S)) successfully passed the 
equivalence test. Five (A2) the top portion of the uppermost table. In Stage 
1, 44 study pairs were randomly assigned to .01 alpha, while 43 study pairs 
were randomly allocated to .05 alpha. Of the 44 study pairs with alpha study 
pairs were randomly assigned to a lenient threshold, whereby three (A2(S)) 
successfully passed the equivalence test. 
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Figure 3. Application of SMART using Steiner and Wong’s (2018) 
correspondence test. 
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Thus, for both correspondence tables, it was also possible to examine the 
effect size for each of the four CT categories. For subsets of successful and 
unsuccessful difference and equivalence test results, meta-analytic 
techniques were used to compute average original-replicate effect size 
differences, and inferential statistics were applied.  

Within each cell of both correspondence tables, two results were 
reported: 1) number of original-replicate study pairs falling in a particular 
cell; and 2) average effect size difference between original and replicate pair 
(“Avg ES diff”). To illustrate study flow within a table, original-replicate 
study pairs that fell into the right column (A1(S) and A2(S)) of the upper, 
right quadrant of the upper correspondence table had a successful α = .01 
difference test, used both stringent and lenient thresholds, A1 and A2, and 
had a successful equivalence subtest.  

In Figure 3, 16 study pairs (16/87 = 18.4%) successfully passed the 
difference test, with similar counts from the two tables: nine from the α = 
.01 table and seven from the α = .05 table. 26 study pairs (26/87 = 29.9%) 
successfully passed the equivalence test, with an equal number of study 
pairs (n = 13) from the α = .01 table and the α = .05 table. For these 26 
equivalent study pairs, the stringent test was passed by seven (7/87 = 8.0%), 
while the lenient test was passed by 19 (19/87 = 21.3%). Of 61 study pairs 
that unsuccessfully passed the equivalence test, 37 tests were at the 
stringent level and 24 at the lenient level. Nine study pairs (9/87 = 10.3%) 
successfully passed both correspondence subtests.  

Within Stage 1, for subsets of study pairs with difference tests of α = .01 
and α = .05, a similar number of successful (k = 9, k = 7) and unsuccessful 
(k = 35, k = 36) study pairs were noted. Within Stage 2, for the nine study 
pairs judged to show correspondence, four (k = 1 + k = 3) were from the 
upper correspondence table (alpha = .01) and five (k = 2 + k = 3) were from 
the lower table (alpha = .05). Of the nine successful, difference study pairs, 
for alpha = .01 (upper table), five were “indeterminant.” Of seven successful, 
difference study pairs, for alpha = .05 (lower table), two were 
“indeterminant.” Together, seven of 16 (43.4%) successful difference study 
pairs were indeterminant. 

In summary, with a focus on the equivalence test and its impact, 29.9% 
(26/87) of OSC study pairs were equivalent, while 10.3% (9/87) of the OSC 
study pairs successfully passed the CT. Seven of the 16 (43.4%) successful, 
difference test study pairs were indeterminant. 

Finally, more than half of replicates, 54 (62.1%), were classified as 
“Difference,” with similar counts in the upper (k = 26) and lower (k = 28) 
tables. Seventeen study pairs (19.5%) fell in the “Trivial difference” 
category, nine from the upper table and eight from the lower table. 
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Effect size difference for subsets with successful, unsuccessful 
CTs, in SMART/CORR 
 
 Using Stage 1 results, a random effects model was fitted to address 
within-study and between-studies error variances. Type I error rates were 
controlled via the Knapp and Hartung (2003) variance estimator in 
conjunction with the restricted maximum likelihood (REML) estimation 
method. The null hypothesis for homogeneous effect sizes was rejected, 
with Q(83) = 32625.98, p < .001, prompting planned, pairwise 
comparisons. Approximately 99.7% of total variation in observed difference 
effects between replication and original studies (I2 = 99.7%) can be 
considered as true variance rather than chance.  
 In Figure 3, using average effect size in cells of the CT, it was possible to 
assess the impact of alpha and threshold in greater detail. For study pairs 
with unsuccessful difference tests in Stage 1, both alpha = .01 and .05 
yielded substantially large, average effect size results (-.510 and -.520, 
respectively) that were statistically significantly different than zero (using a 
95% confidence interval). For study pairs with successful difference tests, 
average effects were closer to zero. For alpha = .05, average effect size 
(-.036) was not significantly different than zero; for alpha = .01, average 
effect size (-.142) was significantly different than zero. 

Table 2 reflects cell-based results shown in Figure 3 such that 
associations between alpha and threshold could be examined with respect 
to average effect size and percent of successful CTs. The comparison 
between Stage 1 study pairs with successful difference tests (I vs. III), for α-
values of .05 or .01, led to a small, non-statistically significant effect size 
difference of 0.106 SD (see “Does alpha matter?”). This small effect size 
difference was consistent with the small probability of difference in 
successful difference tests; nine of 44 study pairs (20.5%) for .01 alpha, and 
seven of 43 (16.3%) for .05 alpha, a nonsignificant difference of 4.2%.  

A random effects model was fitted in Stage 2 using the same model fit 
procedures as in Stage 1. Effect sizes were heterogeneous across all study 
pairs, Q(79) = 21511.8, p < .001, prompting planned, pairwise comparisons.  

The role of threshold was further examined in Stage 2 by determining 
both average effect size difference and percent of study pairs that had 
successfully passed the equivalence test, for a series of four stringent and 
lenient thresholds (see “Does threshold matter”). With alpha = .01, for A1 
vs. A2 and B1 vs. B2, and with alpha = .05, for C1 vs. C2 and D1 vs. D2, 
differences between lenient and stringent thresholds, for successful 
equivalent original study and replicate pairs, were large (35.0%, 30.1%, 
50.0%, and 22.2%, respectively), generally consistent in their magnitude, 
and in each case favored the lenient threshold.  
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Table 2 

Differences in average effect size difference, statistical significance, 95% 

confidence intervals, and proportion successful for SMART/CORR 

Comparisons 

Differences in  

95% CI 
Proportion 

Successful (%) 

Average Effect  

Size Difference 

Stage 1 difference tests 

Does alpha matter, if difference is S? 

I vs III (S vs S) 0.11 (-0.36, 0.57) 
9/44 (20.5) vs. 

 7/43 (16.3) 

Stage 2 equivalence tests 

Does threshold matter, if equivalence is S, U? 

A1 (Stringent) vs A2 (Lenient):  
-0.06 (-0.76, 0.63) 

1/4 (25) vs.  

difference = S 3/5 (60) 

B1 (Stringent) vs B2 (Lenient):  
-0.2 (-0.51, 0.12) 

2/18 (11.1) vs. 

difference = U  7/17 (41.2) * 

C1 (Stringent) vs  
-0.06 (-0.84, 0.71) 

2/4 (50) vs.  

C2 (Lenient): difference = S 3/3 (100) 

D1 (Stringent) vs D2 (Lenient):  
-0.05 (-0.36, 0.26) 

2/18 (11.1) vs. 

difference = U  6/18 (33.3) 

Aggregate of Stage 2 results   
7/44 (15.9) vs.  

19/43 (44.2) * 

Replication of two correspondence tables 

Equivalence    

[A1(S) + A2(S)]/44 vs  
-0.13 (-0.88, 0.62) 

4/44 (9.1) vs.  

[C1(S) + C2(S)]/43 5/43 (11.6) 

Trivial Difference    

[B1(S) + B2(S)]/44 vs  
0.02 (-0.30, .34) 

9/44(20.5) vs.  

[D1(S) + D2(S)]/43 8/43(18.6) 

Difference    

[B1(U) + B2(U)]/44 vs  
0.1 (-0.65, 0.86) 

26/44(59.1) vs.  

[D1(U) +D2(U)]/43 28/43(65.1) 

Indeterminate    

[A1(U) + A2(U)]/44 vs  
-0.06 (-0.36, 0.25) 

5/44(11.4) vs.  

[C1(U) + C2(U)]/43 2/43(4.7) 

Note: ES = effect size; CI = confidence interval; S = successful; U = 
unsuccessful; *p < .05, **p < .01; I-IV, A1-D4, from Figure 3. Successful = 
fulfills requirements of difference or equivalence test. Negative effect size 
differences reflect larger effect sizes in the original set of study pairs. For 
example, from Figure 3, I vs II was calculated as: -0.510 – (-0.142) = -0.368. 
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Thus, in SMART/CORR as in the standard approach, choice of threshold 

was important for successful CTs. However, in only one instance (B1 
stringent vs. B2 lenient, for α = .01) was there a statistically significant 
difference between the percent of successful lenient and stringent 
equivalence study pairs, likely due to generally small sample sizes (9, 35, 7, 
and 36) within contrasts. However, when the four stringent versus lenient 
results were aggregated, the substantial 15.9% vs. 44.2% difference was 
statistically significant. With respect to average ES, no statistically 
significant difference occurred in any of the four stringent vs. lenient 
contrasts.  

 
Agreement between correspondence tables 
 
 With both alpha levels in Table 2, there was close effect size agreement 
between analogous equivalence, indeterminate, difference, and trivial 
difference cells in the two correspondence tables (see “Replication of two 
correspondence tables”). No cell in one correspondence table differed from 
its analogue cell in the second table by more than 0.13 SD, and all effect size  
differences were statistically non-significant. Differences in “proportion 
successful” for each of the four analogous cells were also small and not 
statistically significant.  

In addition, nested, log-linear models were used to examine the pattern 
of counts across analogous cells of the correspondence tables in 
SMART/CORR. Patterns of counts for the difference and equivalence tests 
were conditionally independent across the two tables (χ2(2) = .258, p = 
.879). Therefore, cell patterns in the two correspondence tables were 
successfully replicated using the SMART/CORR design.  
 A1 vs. B1, C1 vs. D1, A2 vs. B2, and C2 vs. D2 comparisons were not 
addressed. These contrasts could potentially be assessed using the 
regression discontinuity design. However, as sample sizes were 
insufficiently large, RD analyses were not conducted.  
 

Discussion 
 

 Compared to the 36% of original-replicate study differences reported in 
OSC to be statistically significant (α < .05 and in the original study’s 
direction), 16.7% (16/96) of study pairs in this study passed the difference 
test for α < .05. Both standard (without randomization to alpha and 
threshold) and SMART/CORR approaches that used the CT yielded 
conclusions that were less positive regarding successful replication. For the 
standard approach in which a simple compilation of successful difference 
and equivalence tests results was tabulated for 87 OSC study pairs, it was 
found that 8%-13.8% of study pairs successfully passed CT, depending on 
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choice of α and threshold. Using a SMART/CORR design, a similarly-sized 
10.3% (9/87) of study pairs were successful using either the .01 or .05 alpha 
or either the ±.25 SD or ±.50 SD threshold. Thus, both standard and 
SMART/CORR approaches produced comparable results that were 
substantially different than OSC results.  

From preliminary analyses based on 96 OSC study pairs and from 
SMART/CORR design analyses based on 87 OSC study pairs (with ES 
outliers removed), separate difference and equivalence test results were 
reported. Sixteen study pairs (16.6% of 97, and 18.4% of 87, respectively) 
passed the difference test. In contrast, the equivalence test was successful 
in 29.9% (26/87) of study pairs. Nine of 16 (56.3%) original-replicate pairs 
that passed the difference test passed both CT subtests. 

The contingent nature of SMART/CORR (a difference test followed by 
an equivalence test), enabled determination of the percent of indeterminant 
cases (a successful difference test followed by an unsuccessful equivalence 
test). Nearly 50 percent (7/16 = 43.7%) of successful difference tests were 
indeterminant, calling into question conclusions in which only a difference 
test had been conducted to assess replicability. 

Using a design-based SMART/CORR approach to randomly allocate 
original replicate study pairs from OSC, it was possible to gauge the 
independent impact of both alpha and threshold on successful CTs. 
Generally, alpha had little impact on both the chance of a successful 
difference test in Stage 1 of the SMART/CORR or the subsequent chance of 
a successful equivalence test in Stage 2. In contrast, a larger, lenient 
threshold was consistently linked to a higher percentage of successful 
equivalence tests and, thus, successful CTs. 

SMART/CORR (see Figure 3) yielded two prototypic correspondence 
tables, one for α = .05 and one for α = .01, by randomly assigning thresholds 
to after successful or unsuccessful difference tests. These tables yielded cell 
results with comparable average effect size differences and similar 
percentages of study pairs successfully passing CT for equivalence, trivial 
difference, difference, and indeterminate study pairs. A total of 54 of 87 
(62.1%) study pairs in these two correspondence tables fell in the difference 
category. Result similarity across tables (a replication within a study of 
replication) represents a strong argument for SMART/CORR’s veridicality. 

 
Consistency of current results with other re-analyses of Open 
Science Collaboration results 
 
 Etz and Vandekerckhove (2016) reanalyzed OSC results using Bayesian 
methods. Unlike the current approach which examined effect size 
differences in original-replicate pairs, the authors examined sets of original 
and replicate studies while also considering several models of publication 
bias within original studies. As the authors note, replication studies do not 
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face the pressure of publication bias, therefore it was expected that 
replication studies would produce generally smaller effect sizes than 
originals. The resulting evidence was characterized as “often weak,” defined 
as having a Bayes factor less than 10, and it was noted that most (64%) of 
the replication and original studies did not provide strong evidence for 
either the null (zero effect size) or the alternative (non-zero effect size). 
Furthermore, “In only eight cases (11%) did both the original study and 
replication study strongly support the alternative hypothesis” (p. 8/12). 
Very comparable, low levels of replicability success were found in this 
SMART/CORR research. 

 
Comparing SMART/CORR results with and without outliers 
 

In Stage 1, when nine outlier study pairs were removed from analyses, 
the Figure 3 comparisons between I vs. II (not shown in Table 2), with an 
average effect size difference that equals -.368, and between III and IV (also 
not shown), with average effect size difference that equals -0.485, were both 
statistically significant. When 9 outliers were included, these effect size 
differences changed little in size (became -0.369 and -0.502, respectively), 
though both of the latter results were non-significant. With and or without 
outliers, the proportion of study pairs for which the difference test was 
successful was statistically significantly lower for replicates in both I vs. II 
and III vs. IV comparisons. For the remaining Stage 1 and Stage 2 
comparisons, in only one instance was the pattern of statistical significance 
different for the set of study pairs with and without outliers. In the reduced 
set of 87 study pairs, the percent successful in the B1 vs. B2 comparison was 
now statistically significant. 

 
Strengths and limitations  
 

In their within-study comparisons approach, Steiner and Wong (2018) 
compared RCTs and quasi-experiments and acknowledged the possibility of 
differing degrees of bias for studies with different designs. In contrast, in 
this replication study nearly all OSC studies were experiments; thus, the 
extent of bias was likely low and similar, thereby not a source of 
confounding in original-replicate pairs.  

In the standard method of judging replicability, CT success can be 
gauged using different combinations of alpha and threshold. However, this 
comparison style of results for different alphas and thresholds is not based 
on separate, independent studies. For example, the same, successful 
difference study pairs at alpha = .05 will be successful at .01, and the same, 
successful equivalence study pairs using a strict threshold will be successful 
using a lenient threshold. In contrast, SMART/CORR-based results utilized 
separate, randomly assigned, independent subsets of study pairs. 
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Consequently, conclusions regarding the impact of alpha and threshold are 
not confounded by differences between subsets of study pairs. 

The SMART/CORR design’s contingent, sequential structure 
(randomization of both successful and unsuccessful difference study pairs 
after an initial randomization) provides a natural fit to address important 
replicability questions. For example: what percent of study pairs have 
successful equivalence tests after a successful difference test (what percent 
of studies pass CT?); what percent of study pairs are indeterminant (have 
successful difference tests followed by unsuccessful equivalence tests)? 

The current SMART/CORR approach is not without limitations, 
however. The choice of two α-values and two thresholds restricts the 
generality of these findings. While traditional wisdom dictates small 
thresholds of ±0.10 SDs or less (e.g., Chaplin et al., 2018), use of small, 
conceptually-based thresholds (e.g., ±.10 SD) would have placed this 
study’s findings yet further from the evidence for successful replicability 
shown in the OSC. Evidence from empirically-based thresholds strongly 
suggested that, even when original study methods were closely adhered to, 
as in OSC, larger thresholds such as ±.25 SD were needed to realistically 
reflect comparability between original and replicate studies. This limitation 
should be qualified with the knowledge that CT is more demanding than 
existing comparability measures, as two filters are applied, and each must 
be satisfied to yield favorable replication. 

In contrast to utilizing many alphas and thresholds, replication 
conclusions based on a single alpha and threshold would also be subject to 
criticism. Imagine a study whose original-replicate effect size difference was 
±.35 SD. For equivalence, if the assigned threshold was ±.50 SD, the null 
hypothesis would be rejected (recall, rejection indicates success). However, 
this study would not have rejected the null at the ±.25 SD threshold, thus 
leading to an “unsuccessful” equivalence test (a CT undercount). For 
difference, if the assigned α was .01 and the study produced a p = .03, the 
nil hypothesis would not be rejected (a difference test success) but would be 
rejected if the study had been assigned α = .05 (an unsuccessful difference 
test), leading to a difference test success (CT overcount).  

Unlike Steiner and Wong’s simulations, statistical power was not 
systematically controlled in the current case, though features of power such 
as sample size were likely equivalent in subsets of study pairs due to the 
random allocation aspect of SMART/CORR. Thus, cells created by the 
SMART/CORR design likely had similar though small sample sizes, which 
would increase the indeterminacy rate. Despite differences between the 
current study and Steiner and Wong, threshold choice was consistently 
important in establishing a successful CT. 

Even with a large, initial dataset of 87 study pairs, SMART/CORR-based 
tests of statistical significance often utilized small samples of study pairs, 
leading to reduced power. Successful difference tests in Stage 1 produced 
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subsets of seven and nine study pairs. When followed by a second 
randomization, the subset sample size was essentially halved. Thus, Stage 2 
comparisons between different thresholds were sometimes based on very 
few study pairs (e.g., C1 vs. C2: four vs. three study pairs). Increasing the 
number of replication studies in studies such as OSC or increasing the 
proportion of successful replications would mitigate this limitation. 

Finally, it is important to note the fundamental role of chance within the 
SMART/CORR approach. The current study was based on a single series of 
randomizations. A second series of randomizations would lead to different 
subsets of study pairs with counts of successful CTs different than counts 
found in this study. However, this limitation is tempered by the similarity 
of the two correspondence tables in yielding similar rates for each of the 
four CT categories. 

 
Conclusions 

 
 Previously, CT had been shown to be a viable method to assess 
replication success within a single study and its replicate. Now, it is 
reasonable to conclude that CT can be extended to include relatively large 
samples of replication studies. In addition, the current research 
corroborates replicability cautions noted by Steiner and Wong aimed to 
protect against indeterminacy by implementing the CT. In a 
SMART/CORR, the generality of results in unconfounded subsets of 
replication studies can be probed under ideal circumstances, in contrast to 
cases in which effects of studies from different publications or from 
artificial-simulation results were compared. Fortunately, both Steiner and 
Wong’s simulation-based approach and the current study’s approach 
utilizing actual study results lend credence to the important role of CT in 
defending against incorrect replicability conclusions. 
 In future studies, the SMART/CORR method would allow high-quality 
testing of multiple study conditions other than α-values and equivalence 
thresholds. For example, one could randomize studies to different statistical 
analyses or sample weighting strategies (though this approach requires 
access to original data) to evaluate their impact. While SMART designs have 
typically implemented simple random sampling, stratified random 
allocation might be applied by partitioning original studies into strata of 
different sample sizes. 

The study results reported here do not alleviate growing concerns 
regarding the replicability crisis. They do affirm that, even under the best of 
circumstances, when methods in replication studies have been carefully 
crafted to match those of original studies, researchers cannot anticipate 
close effect size comparability. Instead, one can argue that replicability 
expectations should be reexamined. In both standard and SMART-based 
assessments, using CT to establish comparability, relatively large thresholds 
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were necessary to yield equivalent original-replicate pairs. Under such 
circumstances, one is led to reconsider the magnitude of thresholds used to 
create reasonable demonstrations of equivalence. At the least, researchers 
are encouraged to implement sensitivity tests that include multiple 
thresholds. 

The SMART/CORR approach is not without precedent. Such analogs 
enable the further application of design thinking to the study of replicability. 
In two-stage randomization (e.g., Shadish, et. al., 2011), a WSC method, 
participants were first randomized to a particular design (an RCT and a 
quasi-experiment), and half are either randomized again or assigned to 
treatment by some other mechanism (e.g., self-selection or cut score). The 
closeness of estimates in two-stage randomization is quite analogous to the 
closeness of estimates within a SMART/CORR design. However, the 
extension of appropriate meta-analytic methods to original-replicate pairs 
in a SMART context as a gauge of replicability is novel. Conceptual 
connections of this sort are precisely the kind that sparks the addition of 
tools to our current kit of replication methods. 
 
 

Author notes: Correspondence should be addressed to William H. Yeaton, 
Department of Educational Psychology and Learning Systems, College of 
Education, Florida State University, Stone Building, 1114 West Call Street, 
Tallahassee, FL 32306. Email: bill.yeaton@yahoo.com  
Thanks to Betsy Becker, Warren Tryon, Bernd Weiss, and members of the 
Synthesis Research Group (SynRG) at FSU for helpful comments on earlier 
drafts of this paper. 
 
 

References 

Anderson, S. F., & Maxwell, S. E. (2016). There’s more than one way to conduct a 
replication study: Beyond statistical significance. Psychological Methods, 21, 
1–12. DOI: 10.1037/met0000051. 

Anderson, S. F., & Maxwell, S. E. (2017). Addressing the “Replication crisis”: Using 
original studies to design replication studies with appropriate statistical power. 
Multivariate Behavioral Research, 52, 305–324. DOI: 
10.1080/00273171.2017.1289361. 

Bonett, D. G. (2020). Design and analysis of replication studies. Organizational 
Research Methods, 24, 513–529. DOI: 10.1177/1094428120911088. 

Borenstein, M. (2009). Effect sizes for continuous data. In J. C. Valentine, L. V. 
Hedges, & H. M. Cooper (Eds), The Handbook of Research Synthesis and 
Meta-Analysis. UPCC Book Collections on Project MUSE. New York: Russell 
Sage Foundation, pp. 221–235. 

Camerer, C. F., Dreber, A., Holzmeister, F., Ho. T.-H., Huber, J. Johannesson, M., 
Kirchler, M., Nave, G. Nosek, B. A., Pfeiffer, T., Altmejd, A., Buttrick, N., Chan, 
T., Chen, Y., Forsell, E., Gampa, A., Heikensten, E., Hummer. L., Imai, T., 
Isaksson, S., . . . Wu, H.  (2018). Evaluating the replicability of social science 

mailto:bill.yeaton@yahoo.com


ASSESSING REPLICATION USING SMART DESIGN 

68 
 

experiments in Nature and Science between 2010 and 2015. Nature Human 
Behaviour, 2, 637–644. DOI: 10.1038/s41562-018-0399-z. 

Chaplin, D. D., Cook, T. D., Zurovac, J., Coopersmith, J. S., Finucane, M. M., 
Vollmer, L. N., & Morris, L. E. (2018). The internal and external validity of the 
regression discontinuity design: A meta-analysis of 15 within-study 
comparisons. Journal of Policy Analysis and Management, 37, 403–429. 
DOI: 10.1002/pam.22051. 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 
Hillsdale, NJ: L. Erlbaum Associates. 

Etz, A., & Vandekerckhove, J. (2016). A Bayesian Perspective on the 
Reproducibility Project: Psychology. PLOS ONE, D. Marinazzo (Ed.) 11, 
e0149794. DOI: 10.1371/journal.pone.0149794. 

Fabrigar, L. R., & Wegener D. T. (2016). Conceptualizing and evaluating the 
replication of research results. Journal of Experimental Social Psychology, 66, 
68–80. DOI: 10.1016/j.jesp.2015.07.009. 

Gelman, A., & Vazire, S. (2021). Why did it take so many decades for the behavioral 
sciences to develop a sense of the crisis around methodology and replication? 
Journal of Methods and Measurement in the Social Sciences, 12, 27-31. 

Institute of Education Sciences. (2020). What works clearinghouse standards 
handbook, version 4.1. Available at: https://ies.ed.gov/ncee/wwc/Docs/ 
referenceresources/WWC-Standards-Handbook-v4-1-508.pdf. 

Knapp, G., & Hartung, J. (2003). Improved tests for a random effects meta-
regression with a single covariate. Statistics in Medicine, 22, 2693–2710. DOI: 
10.1002/sim.1482. 

Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian 
estimation. Advances in Methods and Practices in Psychological Science, 1, 
270–280. DOI: 10.1177/2515245918771304. 

Murphy, S. A. (2005). An experimental design for the development of adaptive 
treatment strategies: Development of adaptive treatment strategies. Statistics 
in Medicine, 24, 1455–1481. DOI: 10.1002/sim.2022. 

Open Science Collaboration. (2015). Estimating the reproducibility of 
psychological science. Science, 349, 1–8. DOI: 10.1126/science.aac4716. 

R Core Team (2021). R: A Language and Environment for Statistical Computing. 
Vienna, Austria: R Foundation for Statistical Computing. Available at: 
https://www.R-project.org/. 

Schäfer, T., & Schwarz, M. A. (2019). The meaningfulness of effect sizes in 
psychological research: Differences between sub-disciplines and the impact of 
potential biases. Frontiers in Psychology, 10.813. DOI: 
10.3389/fpsyg.2019.00813. 

Schauer, J. M., & Hedges, L. V. (2020). Assessing heterogeneity and power in 
replications of psychological experiments. Psychological Bulletin, 146, 701–
719. DOI: 10.1037/bul0000232. 

Schauer, J. M., & Hedges, L. V. (2021). Reconsidering statistical methods for 
assessing replication. Psychological Methods, 26, 127–139. DOI: 
10.1037/met0000302. 

Shadish, W. R., Galindo, R., Wong, V. C., Steiner, P. M., & Cook, T. D. (2011). A 
randomized experiment comparing random and cutoff-based assignment. 
Psychological Methods, 16, 179–191. DOI: 10.1037/a0023345. 

https://ies.ed.gov/ncee/wwc/Docs/


YEATON AND VELASQUEZ 
 

69 
 

Steiner, P. M., & Wong, V. C. (2018). Assessing correspondence between 
experimental and nonexperimental estimates in within-study comparisons. 
Evaluation Review, 42, 214–247. DOI: 10.1177/0193841X18773807. 

Steiner, P. M., Wong, V. C., & Anglin K. (2019). A causal replication framework for 
designing and assessing replication efforts. Zeitschrift für Psychologie, 227, 
280–292. DOI: 10.1027/2151-2604/a000385. 

Tryon, W. W. (2001). Evaluating statistical difference, equivalence, and 
indeterminacy using inferential confidence intervals: An integrated alternative 
method of conducting null hypothesis statistical tests. Psychological Methods, 
6, 371–386. DOI: 10.1037/1082-989X.6.4.371. 

Viechtbauer, W., & Cheung, M. W. L. (2010). Outlier and influence diagnostics for 
meta-analysis. Research Synthesis Methods, 1, 112–125. DOI: 10.1002/jrsm.11. 

Williams, C. R. (2019). How redefining statistical significance can worsen the 
replication crisis. Economics Letters, 181, 65–69. DOI: 
10.1016/j.econlet.2019.05.007. 


