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Approximations for Chi-square and F distributions can both be computed to provide a p-
value, or probability of Type I error, to evaluate statistical significance. Although Chi-
square has been used traditionally for tests of count data and nominal or categorical 
criterion variables (such as contingency tables) and F ratios for tests of non-nominal or 
continuous criterion variables (such as regression and analysis of variance), we 
demonstrate that either statistic can be applied in both situations. We used data 
simulation studies to examine when one statistic may be more accurate than the other for 
estimating Type I error rates across different types of analysis (count data/contingencies, 
dichotomous, and non-nominal) and across sample sizes (Ns) ranging from 20 to 160 
(using 25,000 replications for simulating p-value derived from either Chi-squares or F-
ratios). Our results showed that those derived from F ratios were generally closer to 
nominal Type I error rates than those derived from Chi-squares. The p-values derived 
from F ratios were more consistent for contingency table count data than those derived 
from Chi-squares. The smaller than 100 the N was, the more discrepant p-values derived 
from Chi-squares were from the nominal p-value. Only when the N was greater than 80 
did the p-values from Chi-square tests become as accurate as those derived from F ratios 
in reproducing the nominal p-values. Thus, there was no evidence of any need for special 
treatment of dichotomous dependent variables. The most accurate and/or consistent p's 
were derived from F ratios. We conclude that Chi-square should be replaced generally 
with the F ratio as the statistic of choice and that the Chi-square test should only be 
taught as history. 
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For general linear model (GLM) frequentist statistical procedures, 
there is a choice between a Chi-square and an F ratio for testing 
significance. But when it is best to use one or the other is relatively 
unaddressed in the literature. The fact that any p is only an estimate is 
well illustrated by Boos and Stefanski (2011). Based on their analysis of 
the precision of ps and the implications for decisions about 
reproducibility, they suggest that the accuracy is such that an asterisk 
system based on the number of leading zeros in the p is all that is 
warranted. However, they did not take into account that the p may be 
computed from a Chi-square or from an F ratio, both of which only give 
an approximation to the correct p. Do the conclusions apply to both these 
approximations? As their conclusions do not take into account the 
approximation process, the conclusions reached by Boos and Stefanksi 
(2011) may be optimistic. 
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There has been an occasional study evaluating p estimates. For 
example, Larntz (1978) evaluated Chi-square and found it to give more 
accurate contingency Type I error rates than maximum likelihood or 
Friedman-Tukey statistic. Richardson (1990) ran simulations for the .05 
Type I probability, comparing variations on Chi-square such as Upton’s 
Chi-square and Yate’s correction. His results showed that the usual Chi-
square without corrections was appropriate but observed .05  Type I 
error rates between .04 and .06. However, to our knowledge no prior 
study has tested both Chi-square and F Ratio against each other. The 
purpose of this paper is to compare p's computed by Chi-square and F 
using Monte Carlo simulations for standard general linear model (GLM) 
applications, such as phi and eta coefficients, multiple correlation, and 
ANOVA. 

The F ratio is calculated as 
 

F = ((r2/df1)/((1-r2)/df2),      (1) 
 
where F is Fisher's F ratio and r is the Pearson product moment 
correlation coefficient, the phi /eta coefficient, or the multiple correlation 
coefficient (Guilford & Frutcher, 1978) . Degrees of freedom for 
correlations (including phi and multiple correlation) are: 
 

df 1 = dfx * dfy        
         (2) 
df 2 = s(N – dfx – 1 – dfy + s)     (3) 

 
where dfx is the number of degrees of freedom for the Xs (predictors and 
independent variables), that is, the number of non-nominal Xs and the 
number of categories minus 1 for nominal predictors, and dfy is the 
number of degrees of freedom for the Y variable(s). N is the number of 
cases and s is the minimum of dfx and dfy. 

Perhaps not as well-known but equally well established is the 
computation of Chi-square using a similar general formula. Wherry 
(1984) notes the Chi-square statistic is calculated as: 
 

Chi-square = r² * N       (4) 
 
where r is the phi coefficient for a two way contingency table, the Pearson 
correlation for bivariate analyses, the multiple correlation for 
multivariable/multicategory independent variables, and eta for nominal 
dependent variables, thus including multiple regression analysis and 
ANVOA as well as contingency tables. The degrees of freedom are: 
 

 df = dfx * df y       (5) 
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where dfx is the number of categories of the X minus 1 for each nominal 
variable and the number of non-nominal Xs, and dfy is the same for the 
Ys. 

This Chi-square has been most widely presented as the test of the phi 
coefficient, computed from a pair of dichotomous variables (e.g., Guilford 
& Frutcher, 1978). With an appropriate change in degrees of freedom, it 
can be used with an eta for a multiple category nominal dependent 
variable as well as ANOVA and regression. 

Both the F and Chi-square formulae can both be applied to any data 
set. Thus Knapp (1978) noted that Chi-square can be replaced by F tests in 
analyzing, for example, contingency tables. Both formulae can also be used 
with multivariate analyses with Pillai’s lambda (the multivariate 
generalization of r) (Haase, 2011). Given that F and Chi-square can both 
be computed from the same effect size, it is perhaps not surprising that 
Glass et al. (1972) note that both have the same statistical assumptions. 

For both the F ratio and Chi-square, other formulae were developed to 
ease hand calculations, such as those calculated directly from the cells of 
the contingency (cross tab) table or those to compute the Chi-square from 
the roots of a matrix in canonical analysis. Note that with the GLM it 
makes no difference whether the conditions are labeled contingencies, 
ANOVA, or regression. Thus the same hypotheses and conclusions apply 
regardless of the traditional jargon used. 

Both F ratios and Chi-squares are compared to the F and Chi-square 
distributions, respectively, for an estimate of p, the probability of a Type I 
error. For example, consider a 2 X 2 contingency table with 1 df and equal 
50/50 splits on both variables. Table 1 contains the Chi-square, F, and 
their p's for 3 effect sizes: 
 
Table 1 
Sample Significance Tests Using Chi-square and F Ratio for Selected 
Effect Sizes 

 
r 

 
Chi-square 

Chi-square 
p-value 

 
F ratio 

    F ratio 
    p-value 

0.1 1         0.68 0.99    0.68 

0.2 4         0.046 4.08    0.038 

0.3 9         0.0026 9.69    0.0034 

Note. N = 100, df = 1 for Chi-square; df = 1/98 for F; r is the 
correlation/phi coefficient. 
 
The probabilities of Table 1 are similar but not identical. For these small 
correlations they are within rounding error when rounded to the first non-
zero digit.  
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While the analyses and results below obviously apply to null hypothesis 
significance testing (NHST), all are based in the central Chi-square or F 
distributions (with t distributions being a special case of the latter). 
Therefore, the conclusion above that all analyses could use either the Chi-
square or F distribution applies equally to CIs (with the non-central 
distribution where appropriate). 

Criteria. The question of whether a Chi-square or an F ratio gives a 
more accurate Type I error can be evaluated by two criteria. First, which 
one averages closest to the actual Type I error rate? The more accurate p's 
would be those closer to, that is, less discrepant from, the nominal Type I 
error rate. 

However, accuracy by itself is insufficient. It may be that one is more 
consistent than the other. If the one with the mean closest to the actual 
rate is more inconsistent, it would produce more errors than the one with 
a slightly less discrepant mean but which was more consistent. 

Consistency can be measured as the squared discrepancy of the 
observed p's from the alpha. Hence both the mean discrepancy and the 
squared discrepancy of the approximate p's are needed to judge the 
performance of the approximate p's from Chi-squares and F ratios. 

Dichotomous Variables. As nominal categories are represented by 
dichotomous variables, there may be cause for concern because of 
statements in many recent texts suggesting that log linear analysis be used 
with a dichotomous dependent variable. While those critiques are 
primarily based on regression analysis producing estimates outside the 
range of 0.0 to 1.0, it seems worthwhile to compare the effectiveness of 
both Chi-square and F ratios for dichotomous variables. 

Count data. In addition to the questions of general adequacy and 
adequacy for dichotomous variables, another question can be asked based 
on the traditional applications of Chi-square and F. Chi-square is most 
closely linked to contingency table analysis – often referred to as count 
data -- whereas F ratios are most closely linked to continuous data such as 
regression or continuous Ys such as ANOVA. While, as the formula above 
suggest, either is equally appropriate for both types of data and, as Glass et 
al. (1972) note, the assumptions are the same, given the historical 
association one might predict that Chi-square would function better for 
count data than F ratios. 

N.  A final question can be addressed by these simulations: the degree 
to which the accuracy and consistency are affected by the N. There is one 
apparent difference between Chi-square and F. Chi-square uses only df1, 
the degrees of freedom related to the number of degrees of freedom for the 
variables, whereas F ratio also uses df2, which is based on the total sample 
size. However, Chi-square also accounts for the N, but it does so by 
incorporating it into the Chi-square formula rather than having a df2. If 
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one statistic accounts for the N in a more appropriate way, there should be 
a variation in the estimated p's which varies as a function of the N. 

As statistical formulas such as the standard error generally use the 
square root of N, we would expect that to be the best basis for checking for 
the adequacy of Chi-square and F across N. The relationship could be 
linear or curvilinear. 

 
METHOD 

 
Simulations were run with a variety of variables and analyses across 

selected sample sizes. The data were created using the common pseudo-
random number generator found in programs such as Excel. The 
conditions included were: contingency tables (2x2 with .5:.5 
probabilities, 2x3 with .5:.33 probabilities, 2x5 with .5:.20 probabilities 
(without the Ns that could not give equal ns across the cells)), an equal n 
two-level ANOVA with a normally distributed continuous Y (dependent 
or outcome) and with a dichotomous Y, and a multiple regression with 
both a continuous and a dichotomous Y. 

Each condition was run multiple times, once for each N. The following 
sample sizes were tested: 20, 24, 28, 32, 36, 40, 44, 48, 56, 64, 72, 80, 100, 
and 160 as these could give the desired splits for the contingency tables. 
The variables in the data sets were selected for different analyses as noted 
below. For each condition and sample, 25,000 replications were run. 

For each replication, an effect size was calculated. The Type 1 ps of 
these effect sizes were then estimated using the Chi-square and F formulas 
given above. The mean observed probabilities were compared against the 
expected outcomes at designed nominal alpha levels of .05, .01, and .005 
by subtracting the alpha from the observed p to obtain the observed 
discrepancy. The data were then analyzed for the two criteria: the observed 
discrepancy of p and the squared discrepancy from the nominal alpha. 

The analyses addressed the questions of general accuracy, dichotomous 
Ys, count/ contingency table data, overall tests (that is, the total overall 
effect of main effects and the interaction of the ANOVA and the multiple 
correlation of the multiple regression) and the effect of N. As statistical 
formulae use the square root of N, that was tested for both linear and 
curvilinear relationships with the discrepancies. 

Given that a number of analyses were computed, multivariate omnibus 
and family-wide tests were computed when appropriate; if those were 
significant, then protected post hoc tests were computed for separate 
effects. The analyses below suggested F is better than Chi-square and so 
the former is used for p's computed by the analyses. 
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ANALYSES AND RESULTS 
 

The following analyses are for main effects using significance tests for 
those cases, with the p set at .01. However, multivariate omnibus and 
family-wide tests were also computed, were all significant at p < .0001 
except as noted below, and supported the results in the tables presented. 
Interactions were also tested and, when significant, were generally an 
order of magnitude smaller than the results below and were consistent 
with the presented results. Each datum was based on a simulation sample 
of 25,000 which appears to have led to the identification of differences 
sufficiently small so they would not affect the conclusions from the usual 
uses of ps. Hence, the main effects are presented here. 

Overall Accuracy. An overall examination of the accuracy of Chi-
square and F distributions was computed for an initial comparison across 
all conditions. Table 2A gives the average discrepancy from p for Chi-
square and for F for nominal Type 1 error rates of .05, .01, and .005 (with 
the SDs). The differences between the discrepancies, calculated as the 
Chi-square discrepancy minus the F discrepancy, are also given. These 
were tested against the expected discrepancy values of 0 using Hotelling's 
T2. The Chi-square and F squared discrepancies are presented in Table 
2B. The table also contains tests of the differences between Chi-square 
and F, computed by calculating the discrepancy (or squared discrepancy) 
for Chi-square minus the discrepancy (or squared discrepancy) for F. 
 
Table 2 
Overall Accuracy and Consistency: Chi-square and F Ratio Discrepancies 
from Nominal Alphas 
 Mean (SD) 

alpha α =.05 α =.01 α =.001 

A. Raw discrepancy 

Chi-square  .0011*** (-.0021) -.0009*** (-.001) -.0008*** (-.0007) 

F ratio  .0 (-.002)  .0002* (-.0008)  .0002** (-.0006) 

Difference  .0011*** (-.0017) -.0011*** (-.001) -.0010*** (-.0008) 

B. Squared discrepancy 

Chi-square 0.0056 (-.0102)  .0018 (-.0023)  .0012 (-.0015) 

F ratio  .0039 (-.0089)  .0007 (-.0011)  .0004 (-.0007) 

Difference  .0018** (-.0061)  .0011*** (-.0023)  .0009*** (-.0015) 

Note. Significance was tested with Hotelling T2 tests against an expected 
discrepancy of 0.0 with N = 165. In B. tests were only computed on the last row as 
tests of the first two rows are not meaningful.  
* p < .01, ** p < .001, *** p < .0001. 
 

The first conclusion is that both gave, as indicated by the more careful 
presentations in the literature, approximations to their distributions, 
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being accurate to the first non-zero digit for Chi-square or to three decimal 
places for F but no more.   

Chi-square produced significantly higher ps at the .05 level but 
produced significantly lower ps at the .01 and .001 levels. The general 
accuracy of mean results suggest F is in general the more accurate (the 
first criterion). 

Consistency was computed for all the samples as the squared 
discrepancy from the nominal alpha level. The results in Table 2B include 
the difference between the two tests. Significance tests are only given for 
the last row of B. as the tests of the first two rows are just tests of whether 
there is variation which, of course, there is; presenting these tests would 
imply that they could be interpreted for the purposes of this paper but only 
the tests of the last row are relevant (the tests were run; of course, they 
were all significant at p less than .0001). For all three alpha levels, F had 
lower variability (squared discrepancy) than Chi-square and so better 
meets the second criterion of being consistent. The results were such that 
both F and Chi-square are accurate within rounding to the first non-zero 
digit. 

Dichotomous variables. There were 43 results for dichotomous 
variables which may be considered Ys (dependent variables). Table 3 
contains the Chi-square and F mean discrepancies and squared 
discrepancies for the three alpha levels for dichotomous variables to 
evaluate whether Chi-square or F may be more appropriate. 
 
Table 3 
Dichotomous Data: Chi-square and F Ratio Discrepancies from Nominal 
Alpha 

 Mean (SD) 

alpha α =.05 α =.01 α =.001 

A. Raw discrepancy 

Chi-square .0011***  (.0021) -.0009***  (.0010) -.0008***  (.0007) 

F ratio .0000     (.0020)  .0002*    (.0008)  .0002**    (.0006) 

Difference .0011*** (.0017) -.0011***   (.0010) -.0010***  (.0008) 

B. Squared discrepancy  

Chi-square .0056      (.0102) .0018     (.0023)  .0012        (.0015) 

F ratio .0039      (.0089) .0007      (.0011)  .0004       (.0007) 

Difference .0018**  (.0061) .0011***  (.0023)  .0009*** (.0015) 
Note. Significance was tested with Hotelling T2 tests against an expected 
discrepancy of 0.0 with N = 165. In B. tests were only computed on the last row as 
tests of the first two rows are not meaningful.  
* p < .01, ** p < .001, *** p < .0001. 
 

In Table 3, the F ratio discrepancies are closer to 0 than those for 
Chi-square and have lower standard deviations and squared 
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discrepancies. Thus the criteria of closer mean accuracy and greater 
consistency of the approximate p's are better met for dichotomous 
conditions by F ratio than by Chi-square. These results are similar to 
the results in Table 2. A comparison of the two tables suggests that 
there is no need of special tests just because the Y is dichotomous. 
(Significance tests between dichotomous and non-dichotomous 
conditions found the discrepancies and squared discrepancies to be 
insignificantly different.) 

Count data. Is Chi-square more appropriate for count data 
(contingency tables) than F? While the test for accuracy and 
consistency for dichotomies is a partial subset set of this question, the 
contingency tables differ in having both independent and dependent 
variables which are count data. Table 4 contains the results for the 
contingency tables discrepancy and squared discrepancy means and 
standard deviations using Chi-square and F for each of the alpha levels. 
(Results with Yate’s correction are not reported because it produced 
poorer results than the uncorrected Chi-squares.) 

 
Table 4 
Count Data: Chi-square and F Ratio Discrepancies from Nominal Alphas 

 Mean (SD) 

alpha α =.05 α =.01 α =.001 

A. Raw discrepancy 

Chi-square -.0026*** (-.0021) -.0030*** (-.0018) -.0020*** (-.0012) 

F ratio   .0000      (-.0013)  .0002       (-.0007)  .0001       (-.0005) 

Difference -.0026*** (-.0018) -.0031*** (-.0017) -.0021*** (-.0011) 

B. Squared discrepancy  

Chi-square  .011           (-.0157)  .012         (-.0139)  .0052       (-.0054) 

F ratio  .0016        (-.0015)  .0005     (-.0006)  .0002       (-.0003) 

Difference  .0094**   (-.0152)  .0115*** (-.0138)  .0050*** (-.0054) 

Note. Significance was tested with Hotelling’s T2 tests against the expected alpha 
level with N = 165.  * p < .01, ** p < .001, *** p < .0001. 
 

In B, the overall test of the differences between squared discrepancies 
from Chi-square and F was not significant, Hotelling’s T2 = 3.71, F (3, 36) 
= 1.17, p = .3, so individual significance tests were not performed. 
However a simple binominal test on the Chi-square and F differed at the 
.06 level. In B. tests were only computed on the last row as the first two 
rows are not meaningful. 

As predicted by the history of usage, Table 4A shows the mean 
discrepancies to be lower for Chi-square than F but the differences are 
significant primarily because they bracketed the nominal alpha. If this 
were the only criterion examined, Chi-square would be favored for count 
data. But note that the standard deviations were higher, suggesting that 
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more extreme discrepancies from the nominal Type I error can occur with 
Chi-square. 

Table 4B shows the Chi-square squared discrepancies to be higher than 
those for F. F gives lower squared discrepancy with a lower standard 
deviation than does Chi-square. While Chi-square's raw discrepancy 
indicates adequacy, this analysis found Chi-square ps may have more 
extreme "misses" at each level of the nominal alpha than did ps from F. 
That would generally be considered evidence of a greater number of 
misinterpretations if Chi-square is used instead of F. The SDs and 
squared discrepancies are all lower for F, a result almost significant (p = 
.06) by a simple binominal test. Hence the results suggest F to be more 
consistent than Chi-square for count data. 

When rounded to the first non-zero digit, both Chi-square and F results 
would give values within round error of the nominal alpha level. 

Omnibus Tests. While the above apply to main effects for ANOVA and 
individual regression, do they apply when the tests are omnibus or overall 
tests which include all predictors for ANOVA and for multiple regression? 
Across all conditions which had multiple IVs, the p discrepancies from 
the Chi-squares and F’s were compared. Table 5A contains the mean 
discrepancies (and SDs) and Table 5B contains the squared discrepancies 
(and SDs). 

 
Table 5 
Omnibus Variables: Chi-square and F Ratio Discrepancies from Nominal 
Alpha 

 Mean (SD) 

alpha α =.05 α =.01 α =.001 

A. Raw discrepancy 

Chi-square -.0026*** (-.0021) -.0030*** (-.0018) -.0020***  (-.0012) 

F ratio  .0000       (-.0013)  .0002       (-.0007)   .0001        (-.0005) 

Difference -.0026*** (-.0018) -.0031*** (-.0017) -.0021***  (-.0011) 

B. Squared discrepancy  

Chi-square .011            (-.0157) .012           (-.0139)  .0052        (-.0054) 

F ratio .0016         (-.0015) .0005       (-.0006)  .0002        (-.0003) 

Difference .0094**    (-.0152) .0115***  (-.0138)  .0050***  (-.0054) 

Note. Significance was testing with Hotelling T2 tests against an expected 
discrepancy of 0.00 with N = 165.  In B., tests were performed only of the 
differences between Chi-square and F; the squared discrepancies were re-scaled 
for ease of presentation.  * p < .01; ** p < .001; *** p < .0001. 

 
Table 5 shows that F gives results closer to the nominal Type I error 

rate and to have lower squared discrepancies than Chi-square. This is the 
same conclusion as for the individual tests given in Tables 2 and 3. (No 
significance tests comparing omnibus to single tests was computed as the 
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former are a function of the latter, thus violating the independence of 
observation assumption of such tests.) 
     N. To explore the relationship of N to F and Chi-square ps, analyses 
were computed with the discrepancies and squared discrepancies as the Ys 
and the square root of N as the X (square root was used as this is the form 
of N that appears in formulas for estimating p). Linear, quadratic, and 
cubic tests were computed to check for curvilinearity. The cubic tests were 
all insignificant (p > .01) and are not reported. 
     Table 6 contains the results for each analysis using N in linear and 
quadratic forms to the p discrepancies. Table 6A contains the results for 
discrepancies and 6B for the squared discrepancies. The Chi-square 
results showed it to be clearly influenced by N whether the criterion was 
accuracy (discrepancy) or consistency (square discrepancy). The plotted 
curves consistently showed accuracy and consistency to increase with N 
until the N was 60 to 80, after which they leveled off. The approximate 
discrepancies for N of 25 were .0025, -.0017, and - .0016 for the .05, .01, 
and .001 nominal alphas. For N of 100, they were .0005, -.0004, and          
-.0004. These latter values are accurate to three decimal places. 

 
Table 6 
Discrepancies as a Function of N 

Nominal 
alpha 

 
α =.05 

 
α =.01 

 
α =.001 

 R Line Quad R Line Quad R Line Quad 

A. Raw discrepancy 

Chi-square .32c -.28c .16 .47c .44c -.16 .60c .54c -.25c 

F  NOT SIGNIFICANT (lambda = .03, p = .64) 

B. Squared discrepancy  

Chi-square .24a -.24b .06 .53c -.44c .28c .64c -.54c .35c 

F NOT SIGNIFICANT (lambda = .04, p = .38) 
Note. df1= 1 but 2 for R, df2 = 160. Significance: A < .01, b < .001, c < . 0001. R 
is the multiple correlation; Line gives the linear r, and Quad gives quadratic r. 
 

The discrepancies and squared discrepancies for the ps from Fs were 
unrelated to N. They were equally accurate for Ns from 20 to 160. In this 
regard, F is more consistent than Chi-square. As Table 2 shows, F's 
discrepancies are as low at 20 as Chi-square's are at 100. Hence, in regard 
to N, the conclusion is that F is as or more accurate than Chi-square at all 
levels of N.   

As with the prior analyses, these analyses found only small differences 
between the ps from Chi-square and from F.  
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DISCUSSION 
 

The first conclusion we draw from the analyses is that both Chi-square 
and F are reasonably accurate given their common usage for p's from .05 
to .005 when the null hypothesis is true. If this is found to be consistent 
with other relevant analyses, the common practice of reporting more than 
the first non-zero digit needs to be up dated. This is a more optimistic 
conclusion than Boos and Stefanski (2011) as it suggests the first non-
zero digit may be accurate in addition to the number of zeros before that 
digit (although the issue of reproducibility which influenced Boos and 
Stefanski conclusions is not directly addressed by our data). The 
differences between Chi-square and F ps were within rounding error for 
the first non-zero digit and hence both can be considered equally accurate 
for their common usage. 

The phrase "within rounding error" suggests a .05 result may be 
reported as .04 to .06, and a .005 reported as .004 to .006. However, an 
alternative explanation consistent with these data may be that these ps 
are accurate to three decimal places. The latter is suggested by the fact 
that while the discrepancies are the same order of magnitude across the 
three nominal alpha levels in Tables 2 to 6, the squared discrepancies -- 
with the exception of Table 3 -- decreased one order of magnitude 
between the .05 and the .005 levels, suggesting the rounding error 
interpretation. 

The reason for limitations in the accuracy may, in addition to p's 
intrinsic limitations noted by Boos and Stefano (2011), lay in the fact that 
Chi-square and F are approximations or l in the fact that computational 
procedures are limited in accuracy due to internal rounding or 
truncation. It appears that it is more likely to be the former as the 
improvement in computation since 1990 has not lead to an increase in 
accuracy as Gorsuch (1991) reported the same level of accuracy from 
spot-checks using early micro-computers. 

The variations between Chi-square and F are small and probably 
negligible given the rule of accuracy to the first non-zero digit. The p's 
from either procedure are adequate for most work. This conclusion applies 
to count and dichotomous variables as well as non-count variables, and 
generally across Ns from 20 to 160; when differences were found, they 
were small and specific to a limited set of conditions. The differences are 
clearly smaller than those induced by variations in reliability and validity 
of the measures (Gorsuch & Lehmann, 2010). 

The results indicate that the F ratio provides an estimation of 
probability that is slightly better than Chi-square overall. The conclusion 
includes dichotomous data whether they be independent variables (Xs) or 
dependent variable (Ys). It also applies to multiple df1 uses such as 
omnibus tests whether an overall test for ANOVA or the test for a multiple 
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correlation. The only place that Chi-square discrepancies were slightly 
less than those for F, the SDs and squared discrepancies were greater 
than for F suggesting that Chi-square may produce more large, potentially 
misleading, differences from the nominal p than F.  In addition, Chi-
square was less consistent in the sense that is was less accurate with 
moderate to small Ns. These results suggest that the F ratio may be the 
better procedure to use in all analyses. 

Given the general accuracy of both, they could both be continued to be 
used. But why have both? Given our results and those of Boos and 
Stefanski (2011), the differences between Chi-square and F are negligible 
to slightly in favor of F. Continuing to use both Chi-square and F means 
both must be taught, a practice that violates the rule of elegance so prized 
in mathematics and contributes to "mathematistry" (Little, 2013). 
Teaching one instead of two ways to estimate p is in keeping with 
parsimony. And as a general procedure, F is easier to present, as the ratio 
of two estimates of variability is readily generalizable to all situations. 
Teaching only one method of computing p also means that some other 
important point can be made in the time that would otherwise be taken 
for teaching Chi-square (it would still need to be mentioned in a history 
section to enable reading of the literature and understanding results from 
computer programs that have not yet been brought up to date or are 
inferior in the computational procedures they use (Keeling & Pavur, 
2011)). 

Perhaps these results are not surprising considering one historical fact. 
Fisher was well acquainted with Chi-square before he introduced the F 
ratio. 

The current study is limited to tests of the null hypothesis, the most 
common use of ps. There is also the need to evaluate the ps for data drawn 
from data sets containing moderate to strong effects where results from 
Chi-square and F may show greater differences than when there are no 
effects. 

Multivariate usage of F and Chi-square is not examined in this paper. 
However, the same formulae apply with eta/lambda being the 
multivariate generalization of r. Hence, the current results are expected 
to generalize to multivariate tests. 

While the Ns of the current study ranged as low as 20, the results may 
differ with even smaller Ns. Larntz (1978) evaluated Type I error rates for 
Chi-square small samples and found the accuracy to be, for the .05 level, 
from .035 to .049 and, for the .01 level, from .0036 to .0092. It appeared 
that larger Ns (e.g., 24 and 32) give more accurate p's than smaller Ns 
(e.g., 8 and 12). While our smallest N was only 20, this study found Chi-
square to give lower p's for our smaller Ns which is consistent with Larntz. 
The results of Larntz and the present study are more optimistic than Boos 
and Stefanski (2011) who suggested that the accuracy of ps is only to the 
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order of magnitude (as in the asterisk system, * for .01, ** for .001, and *** 
for .0001). 

It should be noted that these results are with standard approximation 
procedures for Chi-square and for F. Better procedures may well be 
developed and impact the differences between these two distributions 
(Keeling & Pavur, 2011). However, note that the tables show ps from both 
distributions are accurate enough for decision making in most situations. 
Other changes in a study, such as in measurement or sampling, can be 
expected to impact the effect sizes and accuracy of ps to a greater degree 
than just the second non-zero digit (Gorsuch & Lehmann, 2010). In a 
sense, the major conclusion from this study is that, for practical purposes, 
both Chi-square and F are equally accurate for all but the most exacting 
purposes. In that case we would still propose using only one of the two to 
simplify teaching, and the most accurate of the two and easiest to describe 
is F. 

This study has demonstrated several key ideas that are not widely 
known. The first is that F ratios can be calculated not only with ANOVA 
and regression but also with contingency tables, and provides adequate 
probability values for them all. This is done by computing an effect size -- 
correlation/multiple correlation/phi coefficient/eta (the several labels 
identify special cases of the multivariate lambda) -- which is used to 
compute F. The findings clearly demonstrate that the Chi-square statistic 
is slightly inferior to the F ratio in instances where the F ratio is commonly 
utilized and probably less consistent for count data where Chi-square is 
commonly used. There is no need to teach Chi-square; instead introduce 
the effect size and use F to test even contingency tables. Doing so would 
reduce "mathematistry”, which results from ignoring parsimony (Little, 
2013). 
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