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When an element or factor is common to a set of circumstances that element may be causal in its 
relationship to particular dependent variables. This premise was stated by John Stuart Mill more than 170 
years ago, and Mill's canon, the Method of Agreement, is used here as a basis to create the "Common 
Cause" (CC) research design. The CC design is particularly relevant when a set of multiple circumstances 
can be represented by alternative theories of change or competing explanations. We consider several 
potential applications of the design and elaborate its structure within the validity framework of Shadish, 
Cook, and Campbell. We discuss threats to validity controlled by the CC design (e.g., selection bias, the 
bane of applied researchers, is not relevant) and illustrate possible analytic strategies using simulated 
data. We explicitly compare the CC design to four quasi-experimental designs in terms of the validity 
threats that they eliminate. Design weaknesses are addressed and ways to enhance the design's inferential 
power discussed. The CC design itself represents a proof of concept suggesting that other research designs 
can be created from philosophical principles. 
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On the eve of the twentieth century, Mary Mallon emigrated from Ireland at age fifteen to make her way 
in New York City. Brave, headstrong, and dreaming of being a cook, she fought to climb up from the 
lowest rung of the domestic-service ladder… Then, one determined “medical engineer” noticed that she 
left a trail of disease wherever she cooked, and identified her as an “asymptomatic carrier” of Typhoid 
Fever. With this seemingly preposterous theory, he made Mallon a hunted woman. 

 
Internet description of “Fever, a novel” by Mary Beth Keane (2014), describing 
“Typhoid Mary, the first person in America identified as a healthy carrier of 
typhoid fever. 

 
1Studies that yield causal inference have proven valuable as they often contribute to 

theory and provide unambiguous evidence of programmatic benefit. The primary aim of 
this paper is to expand the design options available to multi-disciplinary researchers 
who regularly confront thorny, applied problems. The new design (termed the “common 
cause” or CC design) offered here finds its foundational basis in the works of philosophy 
instead of being created out of “whole cloth.” 

Following a long-standing tradition, contemporary methodological researchers have 
focused on improving existing designs rather than creating new designs. For example, in 

                                                           
1
 The Common Cause (CC) design is the creation of Jared Boyd. It was submitted as a three-page outline to satisfy a 

class assignment for a research methods class taught in 2005 by the first author. During the last week of class, Mr. 

Boyd was encouraged to submit a paper for publication based on his work. Several years later, Mr. Boyd and the 

first author met a second time, and he was again encouraged to publish a paper. On both occasions, Mr. Boyd agreed 

that this was a worthwhile task. Unfortunately, efforts to communicate with Mr. Boyd in the interim have proved 

unsuccessful. This paper was written without Mr. Boyd’s collaboration, but both authors wish to be clear that the 

initial idea for the design is his contribution. In addition, a portion of the current paper follows his class outline. 
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the last decade or so, estimates from well-established quasi-experimental designs have 
been empirically validated using so-called “within-studies comparison” (WSC) tactics 
(e.g., Cook, Shadish, & Wong, 2008). These assessments attempt to establish 
comparability between the results of randomized studies and those in the three 
strongest quasi-experiments, regression discontinuity (e.g., Shadish, Galindo, Wong, 
Steiner, & Cook, 2011), controlled interrupted time series (ITS; e.g., St. Clair 2014), and 
non-equivalent control group designs (e.g., Shadish, Clark, & Steiner, 2008). (In this 
paper, the terminology “control group” and “comparison group” are used 
interchangeably.) To date, inferential improvement has focused upon only these three 
strong quasi-experiments, leaving intact the inferential quality of less sound quasi-
experiments (QEs). The CC design is intended as a viable alternative to these weaker 
designs; we provide a detailed argument for its inferential advantage compared to four 
quasi-experiments: case study, single pretest-posttest design, posttest only control 
group design, and regression point displacement design. 

 Philosophers have written at considerable length about the conditions under which 
causal inference can be justified. For example, Aristotle, Plato, Descartes, and Hume 
each considered causal inference to be an integral element of their particular 
philosophies (Copri & Cohen, 1990). John Stuart Mill’s works are particularly rich and 
detailed in their focus on cause. In Mill’s “A system of logic” (1843), several canons were 
introduced and procedures for establishing causal inference elaborated. While the 
Method of Agreement is the focus here, we will also discuss the important role of Mill’s 
Method of Difference. 

Mill defines the Method of Agreement as: “If two or more instances of the 
phenomenon under investigation have only one circumstance in common, the 
circumstance in which alone all the instances agree is the cause (or effect) of the given 
phenomenon” (Mill 1843, p. 454). Symbolically, Mill’s Method of Agreement can be 
stated as 
 

A → a 
A, B, C → a, b, c 
A, D, E → a, d, e 

 
where, following Mill’s terminology, A through E can be considered as “circumstances” 
and a through e as “instances.” In more modern terminology (and that used in this 
paper), “circumstances” are similar to factors and “instances” closely resemble 
dependent variables. 
 In less formal terms, if a consistent relationship repeats itself across situations, that 
replication is suggestive of cause. In the “Typhoid Mary” case cited above, Mary was the 
common element (A) among a set of circumstances (B, C, D, and E) that represent 
“other factors” possibly implicated in contracting typhoid (represented by a). Each row 
of circumstances in the notation example above may reflect a list of people who 
contracted typhoid. Mary’s common presence (and the absence of other common factors 
associated with a) led public health investigators to conclude that she was the likely 
cause of the disease. 

Related to this canon is Mill’s Method of Difference, which Mill articulates as “If an 
instance in which the phenomenon under investigation occurs, and an instance in which 
it does not occur, have every circumstance in common save one, that one occurring only 
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in the former, the circumstance in which the two instances differ, is the cause, or an 
indistinguishable part of the cause, of the phenomenon” (Mill 1843, p. 455). 
Symbolically, Mill’s Method of Difference can be stated as 

 
A → a 
A, B, C → a, b, c 
B, C → b, c 
 

In the context introduced above, one might say: If typhoid (a) is consistently present 
when Mary (A) is present and consistently not present with the absence of Mary, then 
Mary likely caused many cases of typhoid. 

Each method uses a specific kind of process of elimination to arrive at causal 
inference. With the Method of Agreement, the task is to identify a unique element (in 
the above case, A) such that “… the different elements have no circumstance in common 
except A” (Mill 1843, p. 450). As Mill notes, “…b and c are not effects of A for they were 
not produced by it in the second line; nor are d or e, for they were not produced in the 
first [line]” (p. 451). Because A appears in both lines, its effect must be produced in both 
lines, and only effect a fits this pattern. 

The Method of Difference is more familiar to researchers as it is the logical 
motivation for establishing many possible control groups (typically, a group that has all 
the features of the treatment group, save one). “Instead of comparing different instances 
of a phenomenon, to discover in what ways they agree, this method compares an 
instance of its occurrence with its non-occurrence, to discover in what they differ” (Mill 
1843, p. 455). While the Method of Difference is fundamental to causal inference, the 
Method of Agreement serves as the foundation for creation of the Common Cause (CC) 
design. 

 
A Brief, Recent History of Research Designs 
 

Research methodologists share the same strong interest in cause as that 
demonstrated by philosophers. In fact, research designs, as reflected in their various 
configurations, aim to establish varying degrees of causal inference. The primary social 
science methods textbook (Shadish, Cook, & Campbell, 2002) notes that when designs 
reflect temporal precedence of the presumed cause, document covariation of cause and 
effect, and make alternative explanations implausible, causal inference is enhanced. 
Utilizing these three features, randomized studies (experiments) allow the strongest 
causal conclusions (e.g., Fisher, 1935), but more recently developed quasi-experimental 
designs (Campbell & Stanley, 1966; Cook & Campbell, 1979; Shadish, Cook, & Campbell, 
2002) can also approximate strong causal inference. 

While enhanced techniques to statistically analyze observational data have emerged 
in the last few decades (e.g., Morgan & Winship, 2007; Rubin 2005), new research 
designs have been much less frequent. Well after the dissemination of methods for 
randomized studies by Sir Ronald Fisher, Donald Campbell and his colleagues 
published a long compendium of quasi-experimental designs (Campbell, 1957; Campbell 
& Stanley, 1966). With the possible exceptions of the regression-discontinuity design 
(Cook 2008), given its recent reemergence after an initial appearance in the 1960’s 
(Thistlewaite & Campbell, 1960), the regression point displacement design (Trochim & 
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Campbell, 2014), and the Sequential Multiple Assignment Randomized Trial (SMART) 
design (e.g., Lei, Nahum-Shani, Lynch, Oslin, & Murphy, 2012), there has been a dearth 
of new research designs in the last half century. 

 
Conceptual Examples Using the Common Cause Design 
 

The logic of the CC design is not unfamiliar to those who make or assess claims in 
everyday life. Imagine that a prosecutor wishes to establish guilt for a series of 
robberies. A police force begins to investigate and soon uncovers what is believed to be a 
“signature” hypothesized to represent the alleged criminal’s presence at each crime 
scene. If the crook’s modus operandus has been consistent, the finding of guilt is 
enhanced. As in the typhoid Mary example, consider the field of epidemiology where 
researchers often ask “What element is common to each person who has the disease 
(e.g., common exposure to a food pathogen or environmental risk factor)?” To 
“discover” successful paths to academic jobs for graduate students, faculty may look for 
a consistent pattern of scholarship in recent graduates (e.g., all took classes in research 
methodology, all published a substantial number of peer-reviewed articles, and each had 
experience teaching). 
 Further imagine that a governor wishes to reduce the incidence of drunk driving in 
her state. You believe that a substantially larger fine for drinking and driving would 
reduce the rate of intoxicated driving. Suppose that there are three prominent theories 
with accompanying research evidence for reducing drunk driving. One approach 
increases the saturation of police at night and on weekends. A second strategy 
disseminates Public Service Announcements (PSAs) advocating use of a designated 
driver. The last approach limits the number of alcoholic beverages that bars may serve 
an individual, after midnight. 

To substantiate the claim that more severe punishment (a bigger fine) is effective, 
you choose three cities in your state whose initial levels of drunk driving are similar. In 
the first city, police patrolling levels are relatively stable, and you apply the more severe 
punishment. In the second city, there are no PSAs regarding designated drivers (the 
level is constant, at zero), and you administer harsher punishments. Finally, the bigger 
fine occurs in a city where the number of drinks served in bars after midnight, as 
reflected by legal statute, remains the same. In each instance where the policy reflected 
by the competing theory is constant, the intervention is applied. And in each case, you 
find a statistically significant effect. 

This replication of impact provides convincing evidence that the intervention may be 
causal. The reduction in drunk driving was not due to the level of police patrolling, the 
presence of PSAs, or the policy of serving drinks after midnight, since in each instance 
these policies were held constant, yet favorable effects consistently occurred. It was the 
element in common to all three cites, the larger fine, which produced benefit. 

One way to marry the verbal approach taken by philosophers and that taken by 
developers of designs is to translate concepts reflected in philosophical writing into the 
structure of empirical research reflected by the unique configuration of different 
research designs. This is precisely the strategy used to develop the philosophy-based CC 
design. In homage to the Method of Agreement canon espoused by Mill, this new design 
is termed the “Common Cause” design. 
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Figure 1: Mill’s method of agreement within the context of the Common Cause design. 
 
Figure 1a: The letter A represents Theory A, for some dependent variable a. Rival theories are 

represented as B, C, D, E, each with respective dependent variables b, c, d, e. Among all theories, Theory 

A is unique in that its effect a is consistently present. 

 
Mill’s method of agreement 

A → a 

A, B → a, b 

A, C → a, c 

A, D → a, d 

A, E → a, e 

 
 
Figure 1b: Observations are Os. Intervention of interest is XA, for Theory A. 

 
A representation of Mill’s method of agreement using Xs and Os 

 

OB1   OB2    XA    OB3    OB4 

OC1   OC2    XA    OC3    OC4 

OD1   OD2    XA    OD3   OD4 

OE1     OE2    XA    OE3    OE4 

 
Figure 1c: Theory A is the treatment of interest (i.e. A = X). Interventions B-E are constant or absent 

(constant at level zero) during times t1-t4. All dependent variables a-e are the same, and levels of 

interventions for Theories B-E are assumed to be consistent. The Common Cause X for Theory A is 

absent in baseline (denoted as ~X) and present during treatment for Theories B-E. 

 
An elaboration of the CC design 

            Baseline           Intervention 
       Observation  t1 t2    t3 t4 
 

       A    ~X ~X     X X 
       DV    a1 a2     a3 a4 
 
       B    B B     B B 
       DV    b1 b2     b3 b4 
 
       C    C C     C C 
       DV    c1 c2     c3 c4 
 
       D    D D     D D 
       DV    d1 d2     d3 d4 
 
       E    E E     E E 
       DV    e1 e2     e3 e4 
 
Figure 1 is displayed in three parts (Figures 1a, 1b, and 1c). In Figure 1a, we present a 
symbolic representation of Mill’s Method of Agreement.  In Figure 1b, the schematic 

Theory 
Dependent  
Variable 
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shows that an intervention (X) based on Theory A (XA) is implemented within each of 
the four units of the design, in the context of several Os (observations). Each of the four 
units (there are four competing theories, in this case) receive the intervention of interest 
when one wishes to make the claim that the particular X based on Theory A is likely to 
cause change. One or more pretest and posttest measures are taken in each design line 
to reflect a unique theory or explanation of change. The idea: If introduction of the X 
based on Theory A is associated with consistent change in each line, a causal 
relationship is likely. Since individual theories in other design units are held constant, 
the consistent co-incidence of change is attributed to the X from Theory A. 

Lastly, in Figure 1c we elaborate upon important dimensions of the CC design. Two 
baseline measures (t1 and t2) are made during “~ X” (which can be read as “not X”), 
prior to initiation of an intervention (noted as “X”), based on Theory A. After X is 
initiated, two follow-up measures are taken (t3 and t4) for the same dependent variable 
used at baseline. After baseline, in remaining units of the CC design (B-E), that same X 
is implemented. Because only the X for Theory A is common to each unit, and because 
the level of the four rival theories has been held constant during observations t1-t4, 
change is attributable to the X. 

 
Distinguishing Common Cause from Other Quasi-experimental Designs 
 

Unlike contrasts in most experimental or quasi-experimental designs, the CC design 
lacks a no-treatment control. All units receive treatment. This fundamental difference is 
not only critical to a sound understanding of the CC design’s logic of inference but also 
represents a stark advantage. Since there is no control group in the CC design, 
researchers avoid the often arduous task of demonstrating that selection bias (the 
presence of initial, between-group differences) is absent. Statistical adjustment 
procedures such as propensity scores become irrelevant. 

To further clarify the logical basis of the CC design, consider the nonequivalent 
control group (NECG) design which compares results in the treatment group (first row) 
to those in a control group (second row) that typically receives no treatment: 

 
NR  O  X  O 
NR  O       O 

 
Whether as a difference-in-differences or as a between-group difference at posttest, the 
inferential logic of the NECG design utilizes the Method of Difference. To the extent that 
the two groups are otherwise initially similar, the unique treatment element in the first 
row explains resulting outcome differences. However, while the logical underpinnings of 
the two designs appear fundamentally distinct, those between-groups elements 
equalized in the NECG design might be the same elements made consistent within lines 
of the CC design, and these elements might be held constant one- or many-at-a-time. 
The Method of Difference also applies to the ITS with comparison group design (below), 
because the primary difference between groups is presumed to be the existence of 
treatment in the first row: 
 

NR  OOOOOO  X  OOOOOO 
NR  OOOOOO       OOOOOO 
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However, the CC design, which uses the Method of Agreement, is based on an 

inferential foundation that is fundamentally different than both of these quasi-
experiments! In the CC design, the counterfactual can be regarded as a within-unit 
pattern of no pre-post change, across study units. A pattern of consistent change in the 
presence of Theory A (multiple instances of line 1) versus no consistent change in these 
multiple instances, will imply cause. 

 
The Strength of Multiple Comparisons in the Common Cause Design 
 
 As a potential remedy for mis-estimation of effects in observational studies, 
Rosenberg (1987) argued that a second control group offers several advantages. 
 

The value of a second control group depends on the supplementary information that is available 
about unobserved biases that are suspected to exist. A second control group provides a test of the 
assumption that conventional adjustments for observed covariates suffice in estimating treatment 
effects… two control groups can yield consistent and unbiased estimates of bounds on the 
treatment effect when conventional adjustments fail. (p. 292) 

 
Rosenbaum notes that a second control is particularly apt when statistical adjustment 
may be inadequate (with known covariates) or when “unobserved bias” is suspected (the 
problem of important, omitted variables). A second control group allows one to bracket 
the magnitude of change by determining the degree of overlap of the confidence interval 
created from the second control group with that created by the first control group. 

Following this line of thought, the CC design requires multiple comparisons, but 
each pre-post comparison is an estimate of the intervention’s effect. Within each 
estimate, a particular covariate may occur to some varying degree (or may exist and not 
be measured). However, the more units present in the CC design, the greater the 
prospect that one or more design units include this omitted variable. 

To illustrate, if the degree of initial student technology experience is critical to the 
demonstration of a favorable impact of a computer-based intervention, students in some 
schools will almost certainly have considerably differing degrees of exposure than 
others. This omitted variable does not confound between-group differences that hound 
observational studies based on the Method of Difference; these comparisons are not 
made in the CC design. Instead, the extent to which this omitted variable is present or 
absent across study units actually enhances external validity and allows a more reliable 
bracketing of intervention effect. Thus, while a NECG researcher would try to show no-
difference on a multitude of covariates to avoid confounding, a CC design researcher 
might be motivated to introduce a multitude of different kinds of units on which to 
replicate the intervention. However, the reason underlying their motives will be quite 
different (avoid confounding in the first case and enhance external validity or establish a 
more reliable estimate in the second). 

 
Implementing the Common Cause Design 
 

To facilitate implementation of the CC design, we provide a set of guiding steps. 
While this proxy for a “user’s manual” occurs in the context of a single example, 
interventions in other disciplines can easily be substituted (e.g., exercise for heart 
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health, shared activities for quality of relationship status, medication for illness, removal 
of disincentives to enhance voter turnout). 

Continuing the example noted above, assume you wish to assess the benefits of new 
computers on learning in poorly performing schools. Further assume that multiple years 
of previous test scores are available in each school. These achievement scores exist in 
both mathematics and English content areas. The times during which computers are 
introduced are different for each school. Is it possible to determine that ensuing 
increases in learning are attributable to the new computers? 

In the logical framework of the CC design, we seek a consistent pattern of increase in 
both mathematics and English, across schools. When individual schools with new 
computers have bigger gains than those without new computers, and when these 
consistent benefits occur soon after computer introduction, this pattern of agreement 
will lead us to conclude that the relationship between computer introduction and 
greater learning is likely to be causal. 

A critical, first step in the implementation process for the CC design is to establish a 
list of all theories that would lead to changes in the dependent variable. The adequacy of 
the list depends on the thoroughness of the set of possible explanations that have been 
identified. This list is analogous to the correct identification of the set of all important 
baseline covariates in between-groups designs, where selection bias will occur if the list 
in not exhaustive. For the above, computer-based intervention, researchers must protect 
against the presence of coincident interventions based on other theories. 

The idea is straightforward: demonstrate that the presence of X, the claimed theory 
of change, leads to statistically significant differences for the multiple contexts in which 
each rival theory has not varied. In many research domains such as psychology, 
sociology, public health, and communications, well-known, rival theories have a long-
standing history of being pitted against one other, so the process of identification should 
be relatively straightforward. Incomplete vigilance can undermine correct inference 
with all research designs. 

It is worth re-emphasizing that the presumed causal mechanism of each rival theory 
must be held constant at some particular level (that level can be zero) during the 
duration of the study. Otherwise, change in the rival theory may compete with the X as 
an explanation for the change in the dependent variable. As an example, suppose one 
wishes to demonstrate that a legal change in the speed limit is instrumental in the 
decrease in traffic fatalities when the new law is passed. In three different states, poor 
weather conditions might be consistent in a one state, the level of automobile safety 
features (e.g., better tires) constant in the second, and safe driver PSAs absent in the 
third. Should one or more of the three counterfactual states exhibit a change in the level 
of the independent variable of its relevant theory during the study’s duration, a different 
state should be found to test the intervention of interest. 

The CC design requires that at least one pretest and one posttest measure be 
collected within each unit. The X, the intervention based upon the theory of interest, is 
implemented in each unit. That implementation can occur at a single point in time or 
can be staggered over time, within the differing study units. As noted in the later section 
on threats to validity, however, there may be substantial advantages in eliminating 
validity threats within each unit when multiple pretest and posttest measures have been 
recorded. 
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At the data analysis stage, the CC design is treated as if there were multiple 
independent studies, one study per each sample. One wishes to establish that, in the 
presence of the X, there is a statistically significant change in one or more dependent 
variables of interest. Thus, the critical demonstration is within-units; CC design 
researchers seek a consistent pattern of pre-post changes. It is best when baseline levels 
of the dependent variable are reasonably comparable across units, and the magnitude of 
the change relatively large (and statistically significant) and comparable, across units, to 
clearly indicate that X is causal. However, as with inference in all research designs, 
heterogeneity of results (e.g., across subsets, across follow-up periods, and across 
measures) may occur, and judgment regarding beneficial patterns will be required. 

 
Combining the CC Design with Other Designs 
 
 The CC design need not be used in isolation and could be combined with between-
group designs to enhance causal inference. In fact, a recent methodological trend 
encourages multiple designs within the same study (e.g., Shadish, Clark, & Steiner, 
2008). Strong quasi-experiments may also be used to rule out additional threats found 
in weaker quasi-experiments (Kowalski, Yeaton, Kuhr, & Pfaff, in press). Prospective 
and retrospective data can be combined, and subsets of within- and between-groups 
data analyzed. 

To illustrate, a New York Times Op-Ed contribution (Krugman, 2015) cites a two 
decades old, between-groups study (Card & Krueger, 1994) used to test orthodox 
economic theory positing that an increase in the minimum wage would negatively 
impact employment. Card and Krueger used a single pretest and posttest from each of 
410 fast-food restaurants in New Jersey (where the minimum wage was increased), in 
eastern Pennsylvania (no increase in the minimum wage), and in restaurants in New 
Jersey (where the raised minimum was previously in effect). Krugman noted that, rather 
than a negative impact on employment, “…they found, if anything, a positive effect.” 
Card and Kruger relied upon average results in each state and a number of different 
between-groups regression models to reach their conclusions. 
 Now, imagine what a CC design would have contributed. Each fast-food restaurant in 
New Jersey could be examined for employment change after the minimum wage law’s 
implementation, as could each nearby restaurant in eastern Pennsylvania. Rival 
economic explanations for unemployment such as recession were constant across time, 
in each state. For more than 400 restaurants, a pattern of no decrease in employment in 
most New Jersey fast-food restaurants but few changes in Pennsylvania would represent 
more fine-grained and compelling evidence than conclusions based on averages. 
 
Threats to Validity: Internal and Statistical Conclusion 
 

The inferential strength of the CC design fundamentally depends upon the 
consistency of outcomes across the multiple units of the design. The logic of the CC 
design does not require the highest level of causal inference within each study unit. 
Taken individually, pretest-posttest designs are inferentially weak. But it is agreement in 
the pattern of consistent change across multiple units that is critical to determining if an 
internal validity threat exists. 
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Within the CC context, history is a threat to internal validity if, despite replication of 
the intervention and consistent effects across study units, treatment is given at the same 
time point within each unit. When some external event happens to coincide with each 
implementation of the intervention for each unit of the CC design, the cogency of the 
Method of Agreement will be diminished. Fortunately, treatment can be staggered in 
time so that history can be rendered less plausible (e.g., laws may be initiated at 
different times in different states). 

Testing is a potential threat in the CC design. Fortunately, outside of educational 
contexts, learning that occurs from multiple testing is less likely to occur. When “tests” 
are simply observations rather than the paper and pencil variety we quickly imagine, 
testing does not threaten inference. Prior to intervention, if there is a consistent upward 
or a consistent downward trend in the level of the baseline variable in one or more study 
units, use of a single pretest and posttest measure of change may wrongly attribute 
benefit to the X. But, as it is unlikely that maturation’s effects will be similar across 
units, the presence of consistent outcomes in the CC design makes maturation 
implausible. 

The CC design does not control for instrumentation. If the methods by which the 
outcomes are measured are shown to consistently vary from pretest to posttest in each 
study unit, causal inference will be suspect. Protection against this validity threat relies 
on careful vigilance of the research team to maintain measurement quality or to conduct 
supplementary data analyses to render this threat less likely (see the example for TV 
reports of suicide, reported below). The ability to detect a possible regression artifact 
will not exist when there is a single pretest and posttest measure. However, if the 
outcome effects of regression are dissimilar in different study units and results remain 
consistent, regression is implausible. 

Differential attrition manifests itself differently in the OXO design, where it can 
occur within each unit of the CC design (in contrast to the between-groups version). We 
ask if the characteristics of dropouts are such that pretest covariate averages are 
different than for covariate averages at posttest, across study units (e.g., 5% fewer males 
at posttest in unit one, 13% fewer males in unit two, 27% fewer males in unit three). If 
we find consistency in outcomes across these units, then differential attrition is not a 
viable threat to causal inference. 

As noted above, selection bias (confounding of rival explanatory variables, between 
groups) is not a threat within each unit of the CC design, since such differences 
(confounds) are not relevant to the logic of the CC design. Interpretation will be 
considerably more straightforward, however, if baseline levels of the outcome variable 
are comparable between units. If there is heterogeneity of initial responding between 
units and yet a consistent impact of the intervention, external validity would be 
enhanced (the treatment effect would be robust to different, initial levels of responses). 

Threats to statistical conclusion validity are also inherent to each individual unit of 
the CC design. Thus, familiar threats such as adequate sample size, reliability of 
measures, and treatment integrity naturally depend on the quality of these dimensions 
in each unit of the design. 
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Threats to Validity: External and Construct 
 

The CC design possesses an inherent advantage regarding external validity, given 
that the treatment is replicated across units (the more replications, the better). Should 
different units also utilize different measures, each tapping similar dependent variable 
constructs (e.g., injuries or fatalities in a traffic safety intervention, morbidity or 
mortality following administration of a particular drug) or different outcome variable 
operationalizations, generalizability will increase. 

The CC design naturally protects against several threats to construct validity. Mono-
operation bias will be unlikely when the independent variable construct is 
operationalized differently in each design unit. Perhaps physical exercise, the X, is 
administered by a trainer in some instances, at the gym with friends during other times, 
and at home in the third unit. Consistent, positive change in health status makes it likely 
that the general construct “exercise” is instrumental in improving health. In the CC 
design, because everyone receives essentially the same X, there will be no resentful 
demoralization, no compensatory rivalry, and no compensatory equalization (since 
treatment is not withheld from some units). The design avoids “confounding constructs 
and level of constructs,” if different doses of treatment within each design unit lead to 
consistent effects. Treatment diffusion will not likely be an issue, since all units receive 
treatment (unless multiple “doses” are differentially favored by study participants). 

 
Changing OXO to ITS in CC design units: eliminating additional internal 
validity threats 
 

We might imagine that the most fundamental CC design consists of OXSs in each 
study unit. However, the researcher may alter a subset of the OXOs to create an ITS 
(OOOXOOO) design by adding additional pretest and posttests. This alteration will lead 
to enhanced causal inference within study units, thereby bolstering overall causal 
inference in the CC design. 

For example, with many pretests, incremental learning from the next-to-last to last 
pretest is minimal, so testing becomes a less reasonable threat. The lengthy baseline 
period germane to the interrupted times series design makes it possible to assess trend 
and to gauge maturation’s potential impact on the outcome. If there are multiple 
pretests, the possibility of regression should be apparent to the researcher (determine if 
the X was given at an atypically high or low baseline level). The presence of multiple 
pretest and posttest observations has no direct impact on history, instrumentation, 
selection, or differential attrition (though shorter follow-ups may decrease the risk of 
dropouts). 

 
Eliminating internal validity threats: Comparing the CC design to other 
quasi-experiments 
 
 In this section, we focus upon the advantages of the CC design compared to a subset 
of four quasi-experimental designs: case study, the single pretest posttest, regression 
point displacement, and the posttest only control group. Our design comparisons are 
limited to internal validity threats. Before elaborating internal validity threats in the 
four other designs, we briefly review threats germane to the CC design. 
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In the CC design, temporal staggering of the multiple intervention instances controls 
history, while testing will not be a threat for some kinds of outcomes (e.g., number of 
bankruptcies before and after a law change does not lead to increased “learning” at 
posttest). Instrumentation poses a possible threat but supplementary data analysis may 
enable elimination. Maturation will not be a problem unless the intervention is 
systematically applied across replications when outcome data in each unit are 
consistently trending in the same direction. Regression seems implausible when the 
magnitude of regression is different in different units (consistent size of outcomes 
across units in the face of different amounts of regression reduces the threat of 
regression). If covariates are substantially changed due to dropouts from pre to post but 
outcomes consistently favor the intervention, differential attrition is implausible. It is 
worth repeating… one of the major strengths of the CC design is that neither selection 
bias nor the interaction threats with selection threaten causal inference--the logic of 
inference does not rely on the method of difference. 
 We now consider the internal threats likely present in four other QEs. Campbell and 
Stanley (1966) characterize the “one-shot case study” as a “pre-experimental design” 
and note in Table 1 (p.8) that it does not control most of the listed threats to internal 
validity. The single pretest-posttest design is said to only control selection and 
differential attrition (here, each threat refers to possible differences in the 
characteristics of participants before and after intervention--but these two validity 
threats are most relevant to designs comparing treatment and no-treatment groups). 
Thus, when used without the multiple replication feature of the CC design, a single OXO 
is inferentially quite weak, and neither of these designs fare well in comparison to CC. 
 After languishing for decades, the regression point displacement (RPD) design has 
begun a resurrection (e.g., Yeaton & Moss, under review). Typically, a single group 
receives an intervention and its pretest-posttest result is compared to the regression line 
of pretest-posttest results for a set of control units. If displacement from the regression 
line is statistically significant and if other internal validity threats have been controlled, 
causal inference is enhanced. History and testing are controlled (the impact of both 
threats will be equalized in the intervention unit and the control units), but 
instrumentation will be a threat if the measurement method in the treatment group is 
altered during posttest assessment and no such alteration occurs for posttest measures 
in control units. Regression will be a threat when there is measurement error or if the 
intervention group has been chosen based on an atypical extremeness. Random 
assignment of the single treatment group is recommended, not to achieve pretest 
comparability of intervention and control groups but rather to avoid choosing the 
intervention unit to favorably slant results towards a desired benefit. Thus, selection 
bias is not central to the RPD design’s logic of causal inference. However, all of the 
“selection by interaction” threats are possible. 

The posttest only control group design eliminates many internal validity threats 
(e.g., history, testing, regression, and instrumentation). This design configuration hints 
that the tactic of adding a posttest group to one or more of the multiple groups of the CC 
design could be used to eliminate particular validity threats and to strengthen inference. 
However, the control group tactic does not necessarily eliminate maturation and, more 
importantly, selection bias, differential attrition, or any of the interaction threats with 
selection. 
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NR  X  O 
NR       O 

 
The CC design compares favorably with these last two QEs but has a decided 

advantage in that selection and its interactions are not potential threats for CC. Like the 
regression point displacement and posttest only control group designs, history and 
testing are typically implausible. Unlike the posttest only control group design, 
maturation is usually not a threat for the CC design and, unlike the two-group, 
regression point displacement design, regression is unlikely unless the intervention in 
each OXO consistently follows such atypical periods and leads to inconsistent outcomes 
across study units. Unfortunately, none of the other designs meaningfully addresses 
differential attrition (short duration pretests and posttests and outcome consistency can 
further minimize its likelihood in CC). 

 
Analytic Strategies 
 

Causal claims for the CC design depend on the consistent demonstration of impact, 
for each line of the design. Thus, inference requires that a statistically significant pre-
post difference is shown for most of the individual OXO designs (or ITS designs: 
OOOXOOO). Fortunately, there are several analytic tactics available to the researcher 
depending on the available number of pre- and post-measures. With single pretests and 
posttests, a mixed-design ANOVA may be utilized. If there are several pretest and 
posttest measures, a repeated measures ANOVA or growth curve analysis would be 
appropriate. It may also be possible to correctly model a time series analysis when there 
is a large number of pre and posttest measures (weekly or monthly). Recently developed 
single-case design analytic procedures (Shadish, Hedges, & Pustejovsky, 2014; Shadish, 
Zuur, & Sullivan, 2014) are also applicable. 

 
Enhancing the Applicability of the Common Cause Design 
 

This section of the paper is intended to provide a user’s guide for analysis and 
interpretation of CC design results. First, we present several, plausible scenarios users 
are likely to encounter. We then show patterns of findings indicating when causal 
inference is warranted, when it is clearly not warranted, and when causal inference is 
less certain. Second, we provide appropriate tests of statistical significance for these 
scenarios. In each case, we create simulated data, allowing us to elaborate realistic 
scenarios for its use. 

We explore the applicability of the CC design using four hypothetical research 
scenarios. Each scenario considers four competing “theories” reflected by three, 
separate groups. Our choice for the number of groups and theories is arbitrary, though a 
minimum of three theories is required--a theory of interest and two additional theories 
(groups) are needed to ascertain a pattern of agreement. Observations are made at four 
time points for each scenario, and a single intervention occurs between the second and 
third observations. Using Campbell and Stanley (1966) notation (where “NR” means 
non-random allocation): 
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NR   OA1  OA2   XD   OA3  OA4 
NR   OB1  OB2   XD   OB3  OB4 
NR   OC1  OC2   XD   OC3  OC4 

 

We consider the case in which each group A-C receives an identical intervention (XD), 
constructed from Theory D. 
 Scenarios are characterized by a feature we term “consistency” (the Mill-ian feature 
of “agreement”): the uniformity of the presence of an effect and the uniformity of the 
magnitude of that effect, among study groups. The first, less stringent standard requires 
consistent presence or consistent absence of an effect across all theories. We call this 
“effect consistency.” The more stringent standard of consistency requires that the 
magnitude of effect be uniform, across theories (“magnitude consistency”). Effect 
consistency does not imply magnitude consistency. For those scenarios in which an 
effect was always absent, magnitude consistency is vacuously satisfied. This kind of 
consistency includes the case in which all theories show no effect (i.e., each effect 
magnitude is essentially equal to zero). 
 In Table 1, we note which combinations of effect and magnitude consistency were 
captured within each scenario and provide relevant statistical analyses. In addition, we 
describe how each scenario was created and how data were generated. 

 
Table 1 
Consistency Combinations for Four Scenarios 

  
Effect Consistency 
(Presence/Absence) Magnitude Consistency 

Scenario 1 Yes (Presence) Yes 

Scenario 2 Yes (Absence) Yes 

Scenario 3 No (a group with no effect) No 

Scenario 4 Yes (Presence) No 
Note. When effect consistency was present, the manner in which it was established (i.e. 
presence of effect across all theories or absence of an effect across theories) is noted in 
the text. 
 

For each scenario, data were randomly generated2 as mean outcomes from a normal 
distribution with arbitrary parameters that included a sample size of 100, a standard 
deviation of 5, and a specified mean. Across scenarios, theory-based means were 
established from a range of outcome values, roughly from 30 to 90, with relatively small, 
within-observation variability. These parameters were used to create four observations 
(i.e., time points) for each theory, for all scenarios. Differences between scores at time 
one and time two or at times three and four were attributable to chance. 
 
  

                                                           
2
 Data generation and graphics were completed using R (R Development Core Team, 2016), and all analyses were 

completed using IBM SPSS (IBM Corp. Released, 2012). 
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Figure 2: Results for four simulated scenarios of the CC design. Different theories are 
distinguished by solid, dashed, and dotted lines. In each instance, Theory 4, the theory 
of interest, is included along with each of the other three Theories (Theory 1 and Theory 
4 appear together, etc.). 

Descriptions and Analyses of Four Results Scenarios 
 

Here, we describe individual scenarios and their corresponding analyses. Within the 
repeated-measures framework, we considered cases in which pre-intervention measures 
and post-intervention measures were stable. This configuration allowed us to average 
pre-intervention and post-intervention measures (rather than address four, distinct 
observations per theory) without substantially altering the scenarios themselves. This 
simplifying assumption made the discussion of outcome combinations much more 
straightforward. With scenarios involving unstable baselines, a repeated-measure 
ANOVA would be more applicable. Given these pre-intervention and post-intervention 
means, analyses were conducted using mixed-design ANOVA. If an interaction between 
the time and theory variables was statistically significant, multiple comparison tests 
(Tukey HSD) were conducted to determine which theories had different mean change. 

Scenario 1.  In Figure 2, we show results for each of four CC design scenarios. For 
the scenario in the upper-left corner of Figure 2, we have effect consistency and 
magnitude consistency. From the graphic, both types of consistency are visually evident. 
The implementation of X using the theory of interest (Theory 4) appears to produce 
consistently higher means, post-intervention. For many situations in which the CC 
design is applied, researchers will test interventions among theories yielding outcomes 
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distinct from one another. These claims were statistically verified using ANOVA and 
multiple comparisons. 

The main effect of time was statistically significant (𝐹(1, 297) = 3669.2, 𝑝 < .001,
𝜂p
2 = .93). This finding indicates that pre-intervention and post-intervention averages, 

for at least one of the theories, were different (i.e., there was a statistically significant 
mean change). However, there was no statistically significant interaction between time 
and theory (𝐹(2, 297) = 0.342, 𝑝 = .711). In other words, the statistically significant 
mean change did not vary by theory. From the combination of a statistically significant 
time main effect and a non-statistically significant interaction, we can conclude that 
both effect consistency and magnitude consistency exist. Because of the non-statistically 
significant interaction, we have magnitude consistency. And because time was 
statistically significant, it follows that mean differences among theories were essentially 
the same and that they differed from zero. 

This scenario represents an ideal result pattern for the CC design. We have 
established a consistent, statistically significant effect (effect consistency) whose 
magnitude is uniform across all theories (magnitude consistency), with the intervention 
of interest being a common element among theories. Causal inference is quite plausible. 
 Scenario 2. In Scenario 2, we have both effect consistency and magnitude 
consistency. In this scenario, however, effect consistency is established as a result of the 
uniform absence of an effect across theories. It naturally follows that magnitude 
consistency will also be present. 

In contrast to Scenario 1, the main effect of time in Scenario 2 was not statistically 
significant (𝐹(1, 297) = 0.903, 𝑝 = .343). This result indicates that, for all theories, 
means at pre-intervention and post-intervention measurements were essentially the 
same (i.e., no effect was present). From this single result, we can determine that, while 
magnitude consistency occurred, there was no consistent effect. This pattern of 
outcomes represents a worst case scenario for the CC design. Causal inference is not 
plausible. 
 Scenario 3.  In Scenario 3, we do not have effect consistency, and as a direct result, 
do not have magnitude consistency. This conclusion follows as both Theories 1 and 2 
appear to show a pre-post effect, whereas Theory 3 seems to not produce an effect. 
While the magnitude of the effect for Theories 1 and 2 appears roughly the same, 
because the effect of Theory 3 is essentially zero, the magnitude consistency standard is 
not met. As with Scenario 1, the main effect of time in Scenario 3 was found to be 
statistically significant (𝐹(1, 297) = 1529.0, 𝑝 < .001, 𝜂p

2 = .84). Again, this result 

indicates it is likely that pre-intervention and post-intervention means, for at least one 
of the theories, were different. Furthermore, there was a statistically significant 
interaction between time and theory (𝐹(2, 297) = 328.8, 𝑝 < .001, 𝜂p

2 = .69). 

 From this result, we conclude that the statistically significant mean change likely 
varied by theory. This pattern could be a combination of: 1) not all mean changes for 
theories were significantly different from zero or 2) magnitudes of mean change were 
not equal. Multiple comparison tests show that while theories 1 and 2 had statistically 
significant mean changes which were essentially the same, the third theory did not 
exhibit a mean change which statistically differed from zero. Now, for a different reason 
(effect inconsistency), causal inference is less plausible than in Scenario 1. This pattern 
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of evidence may prompt researchers to investigate possible reasons for finding a single 
instance of no effect, within Scenario 3. 
 Scenario 4.  Finally, in Scenario 4 we present a case with effect consistency but not 
magnitude consistency. As with Scenario 1, all theories appear to have some degree of 
effect. However, Theory 3 seems to have a much larger effect than Theories 1 and 2 
(those with similar effects). 

As with Scenario 3, both the main effect of time and the interaction of time and 
theory were statistically significant (𝐹(1, 297) = 6996.7, 𝑝 < .001, 𝜂p

2 = .96 for time and 

𝐹(2, 297) = 1025.8, 𝑝 < .001, 𝜂p
2 = .87 and for the interaction term). Multiple 

comparison tests again show that Theories 1 and 2 had mean changes which were 
statistically the same. As with Scenario 3, it was Theory 3 which differed from the other 
two theories. However, Theory 3 showed a mean change which was significantly larger 
than the other two theories. Thus, although we have evidence of effect consistency, we 
fail to meet the criteria of magnitude consistency. Causal inference is more certain than 
in Scenario 3 but less certain than in Scenario 1. Since each pre-post difference was 
statistically significant, a causal claim is enhanced. However, the more demanding 
standard that effect sizes be consistent did not occur. 

 
Summarizing Conclusions Stemming from the Four Scenarios 
 
 These four scenarios are meant to inform readers of typical patterns for which the CC 
design is applicable. Graphical examples and corresponding statistical analyses were 
presented for each scenario. Some scenarios clearly establish or fail to establish causal 
inference; others represent varying degrees of ambiguity. It is not our intention to 
convince readers that perfect-like conditions (e.g., similar baseline levels, large and 
statistically significant effects in each unit) are intrinsic to the CC design. Careful 
judgment of a pattern of beneficial change is required. 
 
An Application of CC Design Logic 
 

When a version of the CC design has been implemented in the past, it appears to 
have been viewed as an analytic tactic rather than as a design. Phillips and Carstensen 
(1986) examined the possibility that nationally televised news or feature reports of 
suicide increased subsequent suicide rates among American teens. They examined 38 
instances of such televised stories to determine if the number of suicides consistently 
increased one week before compared to the period one week after each TV report. The 
example provides an excellent opportunity to examine causal inference in a CC design 
applied within an existing research context. 

From a threats to internal validity point of view, history is controlled as the TV 
reports are staggered across time. Testing is not relevant given the nature of the 
dependent variable. Maturation is implausible but may be problematic if news reports 
were systematically introduced during an uptrend in teen suicide rates. Regression is 
unlikely if the reports did not systematically occur soon after an atypically high period of 
teen suicides. Instrumentation is a potential problem in the CC design but was 
discounted by the NEJM study’s analysis of “misclassification” (the authors used 
supplementary data to demonstrate that subsequent suicide rate increases were not an 
artifact of a coincident decrease in cases labelled “ambiguous”). 
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The study offers a clear example of several inherent advantages of the CC design. 
Suicide rates were generally greater in the multiple instances in which TV stories were 
carried by a greater number of networks (application of a dose-response relationship). 
In addition, this multiple replication feature allowed researchers to test theory, as 
female teenagers had considerably greater suicide rates than males, and teen rates of 
suicide increased substantially while those for adults did not (since imitation is less 
plausible, for adults). 

 
 

Weaknesses of the Common Cause Design 
 

The CC design is not without its weaknesses. Like the often arduous task of 
identifying important covariates and demonstrating their baseline equivalence in non-
randomized, between-groups designs, in the CC design an exhaustive search for 
alternative theories of change is the responsibility of the researcher. As a practical 
matter, the more groups utilized in the CC design (the more explanations that have been 
held constant), the greater its likely inferential power (the greater the chances that all 
relevant explanations have been identified). 

The CC design relies on researcher’s ability to demonstrate that competing 
explanations have remained constant during the period when data were collected. In the 
case of a possible legislative change (e.g., reduction in speed limits), mere knowledge 
that existing law has not been altered will be sufficient (though police enforcement of 
the speed limit could vary). But demonstration that other theories have remained 
constant will presuppose both availability and careful analysis of relevant data (e.g., 
archival records of monthly saturation levels of police patrolling). In addition to the 
consistency of competing explanations within each line of the CC design, researchers 
may also want to demonstrate that the pre-treatment, average rate of arrests for drunk 
driving was generally consistent between lines of the design. 

While the CC design allows one to identify a plausible causal construct, that 
construct may have been confounded when given as an intervention. As Mill notes (Mill 
1843, p. 458) “… the effect may have been produced not by the change, but by the means 
we employed to produce the change.” For example, if a ticket followed by a fine for 
failure to stop at a red light was directly administered by police rather than by mail 
(perhaps after camera surveillance at dangerous intersections), the face-to-face 
confrontation with law enforcement rather than the loss of dollars may be the more 
critical component of change. The CC design does not protect against such misnaming. 

It is possible that the competing explanations of each line of the CC design are not 
independent. Such complicated dynamics among factors may partially explain why 
competing explanations are functional in producing change. After all, the fundamental 
purpose of the CC design is to demonstrate that the intervention of interest has a causal 
impact rather than to rule out causal impacts of other potential explanations. From this 
perspective, exactly as Mill posited, the commonality of change in each line of the design 
is integral to the logical conclusion that the presence of the common element only helps 
to establish causal inference. 
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Ways to Enhance the Inferential Power of the Common Cause Design 
 
 Some weaknesses of the CC design can be easily rectified. As the credibility of change 
within each study unit is its most important, logical underpinning, any methodological 
tactic that strengthens this credibility will also enhance causal inference. Each 
unambiguous demonstration of change due to the theory of interest contributes to 
overall, causal inference. 

As noted above, there are many validity threats intrinsic to the OXO design. 
However, a substantial increase in the number of pretests and posttests will enable the 
researcher to render many of these threats (testing, maturation, and regression) less 
plausible (Campbell & Stanley, 1966). The OXO design can also be strengthened by 
adding a control group to one or more units. If each control adequately matches baseline 
covariates, selection bias will be diminished, and pre-post change within lines of the 
design can be more clearly attributed to the theory being tested. But as Mill (1843) 
noted, utilizing a control group that lacks only the X actually incorporates the Method of 
Difference. While the conditions applicable to the Method of Difference occur less 
frequently than those applicable to the Method of Agreement, the simultaneous 
combination of the Method of Difference with the Method of Agreement ultimately 
seems best suited to demonstrate causal inference. 

One may further imagine that the CC design has been embedded within a second 
design, say the non-equivalent control group (NECG) design. Now, instead of a single 
treatment condition in the NECG design, one finds the multiple treatment replications 
characterizing the CC design. Analogously, even a single, relatively weak, normative 
control group will add credence to conclusions stemming from the CC design. Multiple 
counterfactuals are now present (the possibility that all lines of the CC design show an 
effect and that there is no change from pre-intervention to posttest in the no-treatment 
control group). 
 Morgan and Winship (2007) provide a convenient list of strategies to enhance 
inference when an ITS occurs in each line of the CC design. To illustrate, the researcher 
might include multiple outcomes that change due to the presumed cause (e.g., drunk 
driving, speeding tickets, vehicular homicides) when the harsher punishment is 
administered. Rather than utilize a control group, a control variable serves as the 
counterfactual. The idea is straightforward; we hypothesize that the variable of interest 
will change but further contend that other, conceptually relevant dependent variables 
will not. In the above description, we claimed that instances of drunk driving would 
decrease in the face of larger fines. But, we do not expect that arrests for robbery or for 
tickets due to improper vehicle equipment would change. 
 In the drunk driving example, in those cities for which rates are higher to begin, we 
might expect larger decreases in drunk driving rates. Pre-intervention trend should be 
considered and several of the suggested statistical analyses allow for appropriate 
adjustment (e.g., growth curve analysis, repeated measures ANOVA). As discussed 
previously, the point in time when intervention is given can be systematically varied 
across cities (to control for history). It is also important to note if (and why!) any 
reduction occurred in non-intervention cites. Finally, if the fine for drunk driving 
returns to its previous level, one can determine if drunk driving averages revert to their 
pretreatment level. 
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 The importance of establishing a dose-response relationship to enhance causal 
inference (Hill, 1965) has long been recognized as an important tool in public health 
research (Mill calls this the “Method of Concomitant Variation”). This methodological 
tactic would utilize different intervention doses within different lines of the CC design. 
For example, inference would be enhanced should aspirin be given at successively 
higher doses, each sub-grouping leading to proportionally more positive outcomes when 
other plausible contributors to the problem of interest (e.g., average age, treatment 
history, and duration of prior headache symptoms) are held constant in each line of the 
CC design. 
 When the X in each unit has been determined by a cut-point, the CC design can be 
considered as embedded within the regression discontinuity (RD) design. If many 
schools or classes receive an innovation, each determined by a cut-score, a consistent 
discontinuity in each unit would provide stronger evidence that the X was causal. The 
same logic can be applied to the RPD (regression point displacement design; Trochim & 
Shadish, 2014). If several cities within a state received extra funds for computers 
followed by a consistently positive, pre-post impact on achievement, the CC design 
suggests benefit. In addition, if these upward displacements in standardized 
achievement scores occurred for each intervention city when compared to the regression 
line established by the control cities in that same state not receiving funds, this pattern 
would represent a very favorable impact from the perspective of the RPD design. Finally, 
if the favorable pattern was replicated across states, for those cities receiving support for 
computers, we would conclude that the funds were well spent. 
 
Potential Contributions of the Common Cause Design 
 
 There are numerous, positive elements germane to this new design. Unlike many 
quasi-experiments, the CC design does not require a control group. Researchers need 
not expend efforts to rule out selection bias germane to between-groups designs, which 
represents a substantial advantage to the methodologist’s toolkit. With effect 
consistency, differential attrition becomes implausible. The CC design eliminates many 
threats to validity, especially those relevant to construct validity. The multiple 
replication feature of the design naturally enhances external validity. Well known and 
easily implemented data analysis procedures exist to determine if significant change 
occurred within each line of the CC design. 

The CC design is intended to be used when it is possible to show agreement 
(consistency) in the effects (both existence and size) in each study unit. If individual 
study units allow strong tests of the claim of a theory (if individual units have strong 
research designs), then the CC design becomes less relevant. However, as many applied 
settings may not present opportunities for strong tests in each unit, the CC design allows 
one to patch together relatively weak, individual fabrics of evidence (e.g., those from a 
pretest posttest design) to bolster causal claims. 

As noted above, the CC design can be embedded within quasi-experiments such as 
NECG, RD, and RPD designs. By adding and noting the incremental effects of increasing 
doses, the CC design might also be embedded within randomized controlled trials given 
in sequential fashion, an approach termed SMART (Sequential Multiple Allocation 
Randomized Trials) (Lei, Lynch, Oslin, & Murphy, 2012). The CC design is applicable to 
many different disciplines, especially those where competing theories are frequently 
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encountered. Lastly, the translation of philosophical principles to new design structures 
offers considerable promise as a template to create other novel research designs. 
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