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In Figueredo, Black, and Scott (this issue), we presented the rationale for a 
complementary meta-analytic method to accompany traditional effects meta-analytic 
procedures.  Here, we provide an example using Contents Meta-Analysis so that readers 
can become familiar with the application of the method and the implications of its use.  
This illustration will be presented in two major sections.  First, we will describe an 
empirical example of a meta-analysis on retention in higher education where a Contents 
Meta-Analysis was conducted.  Then we will show how the information gained in the 
Contents Meta-Analysis may be applied to address issues of generalizability.   
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Empirical Example: Retention in Higher Education 
 
 To illustrate the utility of contents meta-analysis as a supplementary 
method to effects meta-analysis, we will review an example involving the 
factors that predict retention in higher education.  Retention may be 
defined as the "ability of an institution to retain a student from admission 
through graduation" (Berger, Blanco Ramírez, & Lyons, 2012, p. 12).  The 
analysis described herein constitutes an “ecological” assessment of 
attrition by looking at the personal and situational factors that influence 
the outcome.  A second, less obvious, interpretation is that we are also 
assessing the “ecology” of the researcher, insofar as the patterns in 
measurement reflect characteristics of investigators and their approaches 
to conducting research. 

Assessing the impact of these factors is important because completion 
of a university degree program is associated with a number of positive 
benefits for the student, including both improved academically-related 
skills as well as general life skills.  With regard to academic skills, 
freshman-to-senior gains have been demonstrated in a number of areas, 
including verbal and quantitative skills, speaking and written 
communication, critical thinking, and reasoning.  Socioeconomic 
outcomes  are  improved  as well.      College  graduates,  compared to  high 
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school graduates, are able to obtain more desirable jobs and enjoy 
increased earnings.  Evidence also shows that college graduates experience 
higher psychological well-being, independence, and improved 
interpersonal relations (Pascarella & Terenzini, 2005).  Furthermore, the 
student is not the only beneficiary of a college education.  Indeed, there are 
a number of stakeholders in the higher education enterprise, including the 
institution, educators, parents, taxpayers, federal, state, and local 
governments, and, arguably, society at large.  Given this collective 
investment in the next generation, assessing the factors that facilitate (or 
hinder) completion of a college degree seem warranted. 

 
 

Methods 
 

 Empirical studies published between 1949 and 1992 were retrieved for 
this study.  The initial search produced 240 references which were 
evaluated for relevance to this meta-analysis, of which 148 were rejected as 
a result of inadequate measures of retention.  A final sample of 92 
references was retained for use in a contents meta-analysis, while 42 
references met the criteria for use in an effects meta-analysis. 
 
 
Predictors Used in the Study of Retention in Higher Education 
 
Background Characteristics  
 
 A list of predictors was generated based on conventional models of 
undergraduate student retention.  Every study in the sample was coded as 
either having included each of the selected predictors or not (e.g., 0=not 
present, 1=present).  Background characteristics included demographics, 
academic performance, and personality. 
 
 
Constructs versus Measures 
 
 Each background characteristic listed in Table 1 represents a construct, 
which is an unobservable theoretical variable.  Personality, for instance, is 
a theoretical construct used to explain behavior patterns in individuals.  
Manifest indicators, or measures, are observable variables that can be 
measured and are considered, based on theory, to reflect an underlying 
construct.  Although we are unable to measure constructs directly, we may 
make inferences about them by measuring their characteristics.  We will 
refer to these constructs as Level 1 Constructs, in that they are the 
constructs that were evidently being used in the primary research.  This 
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will distinguish them from the Level 2 Constructs that were derived by us 
(the meta-analysts) from the patterns of association observed among the 
Level 1 Constructs. The Level 1 Constructs thus refer to the putative 
characteristics of the students being engaged as research participants in 
the primary research; the Level 2 Constructs, to be defined below, refer 
instead to pattern discerned among the characteristics of the studies that 
were sampled by our meta-analysis. 

 
Table 1 
Background Characteristics: Constructs and Measures 
Level 1 construct Measure 
Demographics  Ethnicity 
(Including SES) Gender 
 Father’s level of education 
 Mother’s level of education 
 Family income 
 Parent occupation 
 Household items 
Past academic  ACT scores 
performance SAT scores 
 Score on placement exams 
 High school rank 
Personality Attitudes 
 Self-concept 
 Ethnicity 
 Gender 
 Father’s level of education 

 
 

Person-Role Fit 
 

Person-Role Fit is another traditionally cited predictor of retention and 
includes factors such as academic and social integration, each of which is 
composed of several measures which are specified in Table 2. 

 
 

Commitment 
 

Commitment is the final category of conventional predictors of 
retention in higher education and is composed of goal commitment, 
institutional commitment, financial aid, and institutional characteristics, 
each with their own corresponding measures which are listed in Table 3. 
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Table 2  
Person-Role Fit: Level 1 Constructs and Measures 
Level 1 construct Measure 
Academic integration Current grade point average 
 Frequency of academic involvement 

- Use of library 
- Hours of study 
- Counseling/advising sessions 

 Contacts with faculty/students regarding 
academic issues 

 Development of work skills 
 Development of intellectual growth 
 Development of intellectual life 
 Satisfaction with quality of instruction 
 Satisfaction with quality of curriculum 
 Perception of academic experience 
Social integration Attendance at social functions 
 Attendance at student extracurricular activities 
 Friends on campus 
 Weekends spent on campus/month 
 Informal contacts with faculty 
 
 
Table 3  
Commitment: Level 1 Constructs and Measures 
Level 1 construct Measure 
Goal commitment Commitment to earning degree 
 Highest expected degree 
Institutional  Attitudes about institution 
commitment Choice of current institution 
Current financial  Financial aid 
status Scholarships 
 Loans 
Institutional 
characteristics 

Size of institution (2 year, 4 year) 

 
 
Non-Traditional Predictors 

 
 In addition to the factors typically investigated in studies of 
undergraduate retention, we generated a list of predictors that may be 
generally described as “student-centered” variables.  These variables tap 
into the personal characteristics of students that may result in different 
program completion outcomes, such as the influence of significant others, 
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alienation, and academic culture.  A complete list of the Level 1 Constructs 
and measures used is available in Table 4. 
 
Table 4  
Alternative “Student-Centered” Predictors 
Level 1 construct Measure 
Influence of  
significant others 

Encouragement or discouragement by parents, 
teachers, friends 

 Opportunity cost (alternative life options 
Alienation Disparity between students’ expectations of 

involvement (academic/social) and actual 
involvement 

 Contact with home 
Financial need Outside employment and number of hours 
 Satisfaction with cost of attending 
 How much of education paid by parents 
Student culture Emphasis of social elements of institution 

- Intercollegiate athletics 
- Academic, scholarly, intellectual 
- vocational, occupational 

 Quality of relationships with other students, 
student groups, activities, faculty, 
administration, etc. 

Institutional culture Values 
 Satisfaction with institutional prestige 
 Helpfulness of university staff (Advisors/ 

secretaries, bookstore/parking/cashiers) 
Living on campus Where students plan to live (on campus versus  

at home) 
Prior college 
experiences 

Attending college program prior to enrollment 

 
 
Methodological Characteristics 
 

Finally, two key methodological characteristics were included as meta-
analytic predictors, and these are listed in Table 5.  The first is 
Representativeness of Sample, which is coded as reported (1) or not (0).  
The second methodological characteristic is Reporting of Partial Weights 
(i.e., reporting unique variance of a predictor), again reported as present 
(1) or not (0). 
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Table 5  
Methodological Characteristics of Studies 
Level 1 construct Measure 
Representativeness of sample Statistical comparison of study sample 

to student population 
Reporting of partial weights Statistical control of correlated effects 
 
 
Contents Meta-Analysis of Predictors Used in the Study of 
Retention in Higher Education 
 
Descriptive Statistics (Frequencies of Use) 
 
 As stated earlier, 92 studies were retained for contents analysis.  For 
each of these studies, variables of interest were coded for the presence or 
absence of the variables listed above.  Of course, only some studies 
reported variables on each construct.  The frequencies of reports for each 
subordinate construct are listed in Table 6. 
 
Empirical Relations among Predictors (Exploratory Factor 
Analysis) 

 
 The coded variables were analyzed in an exploratory factor analysis.  
Exploratory factor analysis is a method of identifying latent constructs by 
measuring shared variance between variables.  However, because it is 
“exploratory”, the resulting latent constructs are simply mathematically 
constructed, rather than constructed using a priori justification.  It is the 
responsibility of the investigator to evaluate each factor in terms of its 
theoretical value, and then to test their factor structure on an independent 
sample (i.e., confirmatory factor analysis).   

One product of an exploratory factor analysis is the identification of 
patterns in variable measurement; in other words, we are able to see which 
variables tended to be measured together in the same study.  These 
patterns have both conceptual and statistical value.  Conceptually, we may 
begin to see the associations between variables which may reflect an 
underlying theoretical approach toward solving a particular problem.  
Statistically, in conducting a factor analysis, we are essentially attending to 
the problem of multicollinearity by reducing the number of variables in 
our data set.  Failing to account for statistical dependence distorts our 
parameter estimates, but by condensing variance into fewer factors, we are 
reducing the degrees of freedom in our model and avoiding 
overspecification.  As with any model specification, our objective is to 
maximize explanatory power with the fewest number of predictors. 
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Table 6  
Percent of Studies Measuring Variable of Interest 
 Percent 
Background characteristics  

Demographics 78% 
Past academic performance 64% 
Personality 20% 
Financial aid 24% 
Current grades 25% 

Person-role fit  
Academic integration  51% 
Social integration 50% 

Commitment  
Goal commitment 46% 
Institutional commitment 26% 

Alternative “student-centered” predictors  
Influence of significant others 23% 
Living on campus 02% 
Prior college experiences 01% 
Financial need 10% 

Methodological predictors  
Representativeness of sample 13% 
Reporting of partial weights 27% 

 
The factor pattern of each factor is illustrated in Table 7.  These factor 

loadings were produced using Promax (oblique) factor rotation. Ideally, 
each construct loads on to one factor, and not on to other factors, so that 
each factor is a unique and independent structure.  Conceptually, this 
factor pattern shows that the predictors that load on to a particular factor 
tend to be measured together.   

We interpreted Factor 1 (the salient indicators being Academic 
Integration, Social Integration, Goal Commitment, and Institutional 
Commitment) as representing a mainstream theoretical approach in which 
dropping out is predicted by insufficient integration and affiliation (Bean, 
1982; Tinto, 1975).  Factor 2 (the salient indicators being the Influence of 
Significant Others, Financial Need, and Representativeness of the Sample) 
was interpreted as an alternative theoretical approach based on a student-
centered model, where characteristics of the students and their personal 
life experiences become the focal point.  Finally, Factor 3 (the salient 
indicators being Demographics, Past Academic Performance, Financial 
Aid, and Current Grade Point Average) was interpreted as the 
conventional empirical approach in which student interactions with an 
institution are emphasized.   

   



CONTENTS META-ANALYSIS: ILLUSTRATION 

53 

 

 
Table 7  
Rotated Factor Pattern (Standardized Regression Coefficients)                                            
                                             Level 2 constructs: “Research paradigm factors” 

Level 1 constructs: 
Indicator variables 

Factor 1 
(Tinto-Bean 

models) 

Factor 2 
(Student-
centered 
models) 

Factor 3 
(Institutional 

records models) 

Demographics -0.01 0.09 0.38 
Past academic 
performance 

-0.12 0.20 0.41 

Personality 0.08 -0.26 -0.10 
Financial need 0.15 0.09 0.63 
Current GPA 0.06 -0.09 0.32 
Academic 
integration 

0.79 0.02 -0.05 

Social integration 0.86 0.06 -0.02 
Commitment to 
educational goals 

0.68 0.07 0.04 

Commitment to 
institution 

0.78 -0.36 0.15 

Influence of 
significant others 

0.25 0.51 -0.43 

Living on campus -0.04 -0.00 0.03 
Prior college 
experience 

0.06 0.08 0.07 

Financial need 0.16 0.52 -0.21 
Representativeness 
of sample 

-0.19 0.73 0.24 

Partial correlation 0.31 0.49 0.43 
 

To quantitatively test whether the factors were independent, we 
measured the correlations between them (see Table 8).  We found that 
Factor 1 showed a small to moderate correlation with Factors 2 and 3.  
Factors 2 and 3 did not appear to be correlated.   
 Thus, the factor analysis produced three clear and distinct latent 
common factors that cumulatively explained 89% of the variance in the 
variables included in this analysis.  The eigenvalues and proportions of 
variance explained for each factor, along with the cumulative proportion of 
variance explained, are outlined in Table 9. The optimal number of factors 
to retain were selected by means of a subjective scree test (Gorsuch, 1983),  
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Table 8  
Factor Correlations 
 “Research paradigm factors” 
 
Level 2 constructs 

  
Tinto-Bean 1 

Student-
centered 2 

Institutional 
records 3 

Factor 1  
(Tinto-Bean models) 

1.00   

Factor 2 
(Student-centered models) 

0.26 1.00  

Factor 3  
(Institutional records models) 

0.14 -0.04 1.00 

Note: 1Academic Integration, Social Integration, Goal Commitment, and 
Institutional Commitment; 2Influence of Significant Others, Financial Need, and 
Representativeness of the Sample; 3Demographics, Past Academic Performance, 
Financial Aid, and Current Grade Point Average. 
 
as well as by the fact that adding more factors after accounting for 89% of 
the variance would likely be a waste of effort and model parsimony. We 
refer to these common factors as Level 2 Constructs because they do not 
directly describe the population(s) of students addressed by the primary 
researchers, but instead describe the population(s) of studies addressed by 
our meta-analysis. The Level 2 Constructs are, of course, based on the 
Level 1 Constructs that were originally measured in the primary research, 
but describe the investigative behavior of the primary researchers who 
elected to assess these particular constructs as opposed to all the possible 
alternative predictors that might have been imagined to influence student 
retention. The students are therefore the subjects of investigation for the 
primary researchers,  whereas the studies performed by those  researchers  
 
Table 9  
Eigenvalues of the Reduced Correlation Matrix 
 “Research paradigm factors” 
Model parameter Tinto-Bean 1  Student-

centered 2 
Institutional 

records 3 
 Eigenvalue 
 

3.05 1.34 1.23 

Proportion of variance 
explained 

0.48 0.21 0.20 

Cumulative proportion of 
variance explained 

0.48 0.70 0.89 

Note: 1Academic Integration, Social Integration, Goal Commitment, and 
Institutional Commitment; 2Influence of Significant Others, Financial Need, and 
Representativeness of the Sample; 3Demographics, Past Academic Performance, 
Financial Aid, and Current Grade Point Average. 
 



CONTENTS META-ANALYSIS: ILLUSTRATION 

55 

 

are the subjects of investigation for the meta-analysts. These “Research 
Paradigm Factors” were therefore generated by the behavior of the 
researchers and not that of the original research participants.  
 
Summary of Contents Meta-Analysis 

 
Using exploratory factor analysis, we were able to identify three 

common factors corresponding to clusters of methods that tended to be 
used in conjunction with one another.  These common factors appeared to 
reflect independent research paradigms or approaches to understanding 
student retention in higher education (see Table 10).  Our next step will be 
to include these factors as predictors in the effects meta-analysis to 
determine whether one’s theoretical approach and one’s methods impact 
the magnitude of the mean effect sizes reported. 
 
Table 10 
Summary of Results of Contents Meta-Analysis 
Level 2 constructs: 
Research paradigm factors 

Level 1 constructs: 
Salient indicators 

Mainstream theoretical approach  
(Tinto-Bean models) 

Academic integration 

 Social integration 
 Goal commitment 
 Institutional commitment 
Alternative theoretical approach  
(Student-centered models) 

Influence of significant others 

 Financial need 
 Representativeness of sample 
Conventional empirical approach 
(Institutional records models) 

Demographics 

 Past academic performance 
 Financial aid 
 Current grade point average 
 
 
Effects Meta-Analysis of Predictors Used in the Study of 
Retention in Higher Education 
 
 Now that we identified three unique research paradigms in 
undergraduate retention studies, we assess their influence on the effect 
sizes reported.  We begin by reviewing the results of the synthesized effect 
sizes for each predictor.  The subsequent step places the research 
paradigm factors derived in our previous analysis and the individual 
predictors into a General Linear Model in order to determine their 
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contribution to study outcomes.  Finally, we demonstrate how hierarchical 
model comparisons can be used to test the unique contributions of factors, 
predictors, and interactions to reported effect sizes.  The results of these 
comparisons serve as the foundation to create structural models and 
estimate the parameters of significant variables. 
 
Descriptive Statistics (Effect Sizes of Predictors) 
 

Table 11 shows the descriptive statistics for the synthesis of effect sizes 
of individual predictors.  The means column is presented using 
standardized regression coefficients.  The values represent the effect size 
between a given predictor variable and the outcome, retention.  All 
predictors are positively related to retention, as expected.  The lowest 
mean effect size (r = 0.03) is associated with Institutional Commitment, 
while the highest mean effect size (r = 0.33) reflects the contribution of 
Living on Campus.   

 
Table 11 
Descriptive Statistics for Effect Sizes (Standardized Regression 
 Coefficients)  
Variable n Mean Min. Max. 
Demographics 29 0.17 0 0.44 
Past academic performance 33 0.20 0 0.91 
Personality 8 0.16 0 0.40 
Financial aid 8 0.14 0 0.36 
Academic integration 19 0.09 0 0.48 
Social integration 19 0.07 0 0.46 
Commitment to educational goals 20 0.16 0 0.90 
Commitment to institution 5 0.03 0 0.25 
Influence of significant others 11 0.05 0 0.21 
Living on campus 2 0.33 0.29 0.36 
Prior college experience 1 0.12 0.12 0.12 
Financial need 3 0.10 0.07 0.37 
 
Inferential Statistics (Meta-Analytic Predictive Models) 

 
 We now employ the predictors and factors in a hierarchical General 
Linear Model.  The model is similar to a split-plot design, where sub-
categories (“split-plots”) are nested within larger categories (“whole-
plots”).  Originally, Fisher (1925) proposed split-plot methods for 
agricultural experiments.  Formal split-plot designs use independent 
treatment variables and randomly assign conditions at both the whole-plot 
and split-plot levels.  For example, in a study with two independent 
variables (A and B), each with three levels (1-3), a split-plot design would 
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employ one independent variable as the whole-plot variable (e.g., A), and 
the other independent variable as the split-plot variable (e.g., B).  Each 
level of the split-plot variable would be nested within each level of the 
whole-plot variable, producing nine different outcomes (A1 contains B1, 
B2, B3; A2 contains B1, B2, B3; A3 contains B1, B2, B3).  It may also use 
larger blocking variables (superordinate to whole-plot categories) for 
replication purposes.   
 In the case of our model, we do have nested variables, where 
independent predictors are nested within the research paradigm factors.  
However, because factors were derived from predictors, we do not have a 
fully crossed design.  Nevertheless, the analogy to “split-plot” design is 
useful in terms of understanding how error is treated.  There are separate 
error terms for whole-plots and split-plots, so in the case of this example, 
we calculate the effect of paradigm factors and the associated residual 
error term, and the effect of predictors and factor-predictor interactions, 
and the associated residual error term (see Table 12). 
 We found that the main effects of research paradigm factors explained 
23% of the variance in effect sizes in our sample.  Combined with the 
associated error term, the between-studies variables amounted to a full 
56% of the explained variance.  Once paradigm factors were accounted for, 
the main effects of the predictor variables accounted for only 8% of the 
explained variance; however, factor-by-predictor interactions contributed 
another 13%.  The entire model explained about 80% of the variance in the 
effect sizes of our sample. 
 
Table 12 
“Split-Plot” Hierarchical General Linear Model 
Source of variance  
(heterogeneity) 

Proportion of variance explained 
(sR2) 

Main effects of factors .23 
Residual effects of studies .32 
Subtotal between studies .56 
Main effects of predictors .08 
Factor*predictor interactions .13 
Subtotal within studies .21 
Whole model .80 
Residual .23 
Total 1.00 
 
 The General Linear Model provided us with main effects of factors and 
predictors.  The next step of our analysis extends these findings by 
producing significance tests for the unique contributions of selected 
variables in our model.  Using hierarchical modeling, it is possible to parse 
out the influence of a given variable and quantitatively test whether it 
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significantly adds to the overall model.  These analyses are reported in 
Table 13.   
 
Table 13 
Hierarchical Significance Tests for Meta-Analytic Structural Hypotheses 
Source NDF DDF F(H0) p > F 
Factor 1  
(Tinto-Bean models) 

1 38 26.93 0.0001 

Factor 2 
(Student-centered models) 

1 38 0.14 0.7112 

Factor 3 
(Institutional records models) 

1 38 0.09 0.7653 

Study 38 157 2.92 0.0001 
Predictor 11 157 2.60 0.0072 
Tinto-Bean models 
Factor*predictor 

9 157 1.50 0.1634 

Student-centered models 
Factor*predictor 

9 157 1.43 0.1888 

Institutional records models 
factor*predictor 

8 157 2.33 0.0264 

 
 Our model comparisons indicated that Factor 1 (Tinto-Bean models), 
Study, Predictor, and the Factor 3-by-Predictor Interaction (where Factor 
3 is institutional records) were all significant.  In other words, we can 
eliminate the remaining variables because they do not provide a significant 
contribution to our model of student retention in higher education. 
 We are now situated to describe the role of our variables in terms of 
parameter estimates.  Parameter estimates offer value over and above 
standard null hypothesis significance testing (NHST), the limitations of 
which have been described extensively elsewhere (e.g., Cohen, 1994; 
Meehl, 1990).  They are not subject to the assumptions of NHST, and offer 
an estimation of the parameters of the population of interest (Figueredo & 
Olderbak, 2008).  

We have reduced our model to Factor 1 (Tinto-Bean Models), Study, 
Predictor, and Factor 3 (Institutional Records Models)-by-Predictor 
Interaction, and the parameter estimates for each of these variables are 
reproduced in Table 14.  The parameter estimates for each variable have 
been tested for significance, resulting in further data reduction.  Within 
this restricted model, the parameter estimates for Factor 1 (Tinto-Bean 
Models), Goal Commitment, and Factor 3 (Institutional Records Models)-
by-Past Academic Performance are all significant.  Demographics, Social 
Integration, and Factor 3 (Institutional Records Models)-by-
Demographics are all moderately significant. 
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Table 14 
Hierarchical Parameter Estimates for Statistically Significant Effects 
Model parameter Estimate SE t(H0) p > t 
Intercept 0.19 0.01 14.67 0.0001 
Factor 1 (Tinto-Bean models) -3.12 0.46 -6.81 0.0001 
Predictors     
 Demographics 0.03 0.02 1.76 0.0812 
 Past academic performance 0.01 0.02 0.67 0.5032 
 Personality -0.09 0.08 -1.11 0.2703 
 Financial aid -0.03 0.09 -0.38 0.7047 
 Academic integration -0.02 0.02 -0.67 0.5044 
 Social integration -0.04 0.02 -1.74 0.0846 
 Commitment to educational goals 0.05 0.02 2.63 0.0096 
 Commitment to institution -0.03 0.07 -0.37 0.7129 
 Influence of significant others -0.07 0.07 -1.00 0.3214 
 Living on campus -0.02 0.19 -0.13 0.8947 
 Prior college experience -0.01 0.13 -0.04 0.9646 
 Financial need 0.32 0.24 1.31 0.1918 
Factor 3 (Institutional records 
models)*predictor 

    

 Demographics -1.41 0.79 -1.78 0.0767 
 Past academic performance 2.64 0.74 3.58 0.0005 
 Personality 0.68 3.56 0.19 0.8490 
 Financial aid -0.48 2.81 -0.17 0.8645 
 Academic integration -0.32 0.89 -0.36 0.7179 
 Social integration -0.37 0.78 -0.47 0.6384 
 Commitment to educational goals -0.90 0.71 -1.28 0.2044 
 Commitment to institution -1.07 2.20 -0.48 0.6294 
 Influence of significant others -0.42 2.36 -0.18 0.8608 
 Living on campus -0.75 5.86 -0.13 0.8984 
 Financial need 13.64 10.52 1.30 0.1969 
 
 The data in Table 14 indicate that studies that measure certain 
variables as predictors of undergraduate retention report different effect 
sizes.  For example, studies which incorporated measurement variables 
associated with the Tinto-Bean Models of retention reported significantly 
lower effect sizes than the other models.  Studies which examined 
retention by looking at institutional records, particularly past academic 
performance, reported significantly higher effect sizes than other 
conventional empirical variables.  Non-significant predictors, in this case, 
do not statistically influence the magnitude of the effect size reported.   

In essence, we are able to identify, quantitatively, how the methods 
used by the researchers in our sample impact the outcome reported.  It 
does not, unfortunately, indicate the “true” effect size in the population of 
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students, but we may use these results to generalize to the population of 
research articles published in the scientific literature.  We may also 
attempt to statistically account for inflated or deflated effect sizes in our 
estimates of the mean effect size. 
 To further investigate the relationship between methodology and 
reported outcomes, we calculated the mean effect size (r=0.14) in 42 
studies that actually reported Squared Multiple Correlations.  
 Table 15 shows the results of a bivariate regression estimating the 
effect of the level of Factor 1 (Tinto-Bean Models) upon the magnitude of 
the Squared Multiple Correlations reported in the articles that actually 
reported the Squared Multiple Correlations. This means that a higher level 
of Factor 1 was predictive of a significantly lower Squared Multiple 
Correlation (the baseline being ~15% of the variance and the slope 
representing a loss of ~1% of the variance for every unit increment in 
Factor 1). 
 
Table 15  
Inferential Statistics: Paradigmatic Effects on R-Squared of Whole Model 
Parameter Estimate SE t(H0) p > t 
Intercept 0.15 0.01 16.47 0.0001 
Factor 1   
(Tinto-Bean model) 

-.96 0.36 -2.67 0.0110 

 
In the 60 articles that actually reported the Proportion of the 

Population Sampled, about 44% of the population was sampled, on 
average.  Unfortunately, we do not know whether the participants sampled 
in these studies are representative of the population, but the percentage 
may provide an initial assessment of representativeness (such as if the 
percentage is very high).  

Table 16 shows the results of a bivariate regression estimating the 
effect of the level of Factor 1 upon the Proportion of the Population 
Sampled reported in the articles that actually reported the Proportion of 
the Population Sampled. This means that a higher level of Factor 1 was 
predictive of a significantly higher Proportion of the Population Sampled 
(the baseline being ~44% of the population and the slope representing a 
gain of ~4.7% of the population for every unit increment in Factor 1). 

 
Table 16  
Inferential Statistics: Paradigmatic Effects on Proportion of Population 
Sampled 
Parameter Estimate SE t(H0) p > t 
Intercept 0.44 0.03 14.63 0.0001 
Factor 1  
(Tinto-Bean model) 

4.78 1.33 3.61 0.0006 
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A related observation is that, for the 92 studies used in the Contents 

Meta-Analysis, only 12 reported having collected a Representative Sample 
(regardless of the proportion of the population included), whereas 80 
reported not having collected a Representative Sample of the population.  
The mean difference in the magnitude of the effect sizes between studies 
that did and did not report having collected a Representative Sample was 
.562, indicating that a more representative sample generally produced 
larger effect sizes. 

 
 

Generalizability Theory Meta-Analysis 
 
The Estimation of Variance Components 
 

Generalizability Theory (GT) meta-analysis is another complementary 
method of meta-analysis. GT is based on the same theoretical variance-
component model upon which all of the analysis of variance (ANOVA) is 
fundamentally based.  In traditional ANOVA models, the hypothetical 
variance components presumably underlying the Observed Mean Squares 
(OMS), or observed variances, are used to identify the proper numerators 
and denominators needed for the construction of valid F-Ratios for the 
purpose of Null-Hypothesis Significance Testing (NHST). This is known as 
“Expected Mean Squares Analysis”, because the hypothetical variance 
components are often referred to as the Expected Mean Squares (EMS), as 
contrasted with the OMS.  In GT models, the relative magnitudes of these 
hypothetical variance components are instead estimated for the purpose of 
constructing more direct quantitative comparisons among them, as 
opposed to the binary decisions of NHST.  

The statistical theory underlying variance-component models specifies 
the hypothetical composition of the Observed Mean Squares (OMS) in 
terms of these constituent Expected Mean Squares (EMS). As with a 
chemical formula, which specifies not only what kind of atoms (classified 
as chemical “elements”) constitute a molecule (the basic unit of a chemical 
“compound”), but also their relative numbers in each molecule by means 
of an associated coefficient (typically as a subscript following each 
element), a complete EMS Analysis specifies which particular EMS 
components are hypothesized to comprise any given OMS in the empirical 
results, with an associated numerical coefficient (usually shown preceding 
each variance component) indicating the relative quantitative contribution 
of each to the total variance observed within each term.     

Because these EMS expressions are formulae that are easily deduced 
from the basic design of any given study (even automatically by statistical 
software), the EMS Analysis is something that follows logically from the 
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table of observed mean squares and their associated degrees of freedom 
(which serve as the basis for deriving the coefficients assigned to each 
variance component).  All that remains to pave the way for a true GT 
analysis is to use this information to estimate the expected magnitudes of 
the hypothesized variance components by solving the results of an EMS 
Analysis as a system of linear equations, with the OMS (or observed 
variances) and the numerical coefficients serving as the “known” 
quantities and the EMS (or expected variance components) serving as the 
“unknown” terms to be obtained through this procedure. This estimation 
may be performed by means of algorithms such as Ordinary Least Squares 
(OLS) or Restricted Maximum Likelihood (REML). The benefits of using 
REML include the fixing of the lower permissible bounds of variance 
components estimates to zero, whereas OLS sometimes produces negative 
estimates for variance components, which are generally interpreted as 
indicating zeros, but are technically out of proper bounds. 

In our illustrative empirical example, Table 17 displays the estimated 
magnitudes of several of the major meta-analytic predictors identified in 
the hierarchical regression models presented above. These quantities are 
not very directly interpretable except in terms of their relative magnitudes.  
For example, we might note that the variance component estimated for the 
“random effect” of unexplained (residual) component of the variance in 
effect size among studies is over three times as large as that estimated for 
systematic variance attributable to the “focal” effect  (meaning the effect of 
interest), or the level of Factor 1 associated with each study. However, this 
initial assessment is not the most pragmatically useful or interpretable 
result produced by a GT model.  Those are given instead by what have 
been called Generalizability Coefficients. 
 
Table 17  
Variance Component Parameters for Generalizability Analysis 
Variance component Estimate 
σ2(Factor1) 0.00006868 
σ2(Study) 0.00022467 
σ2(Predictor) 0.00005328 
σ2(Factor1*predictor) 0.00004686 
 
 
The Estimation of Generalizability Coefficients 
 

Generalizability Theory (GT) is a direct extension of Classical Test 
Theory (CTT), which was originally proposed to address psychometric 
questions of reliability.  According to CTT, any observation is composed of 
two components: “true score” variance and “error” variance.   In this view, 
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all systematic variance is interpreted as an individual’s “true” score, or the 
value that would be obtained over infinite observations.  All remaining 
variance is termed “error” variance, and is assumed to be composed only 
of measurement error. 

In contrast, GT analysis disaggregates these variances further to 
account for components of the systematic variance attributable to 
variables other than the one under immediate study.  These sources of 
variance, termed “facets”, can then be quantified so that their individual 
and interactive effects are modeled directly. A facet may be “fixed” or 
“random”, and these distinctions are analogous to “fixed effects” and 
“random effects” in the general linear models described above.  In fixed 
effects models, the observed levels of a nominal variable (ANOVA “factor”) 
are considered to be exhaustive of the population of possible levels and 
generalizability is limited to the levels represented in the study.  In 
random effects models, these observed levels are instead conceptualized as 
being randomly selected from a larger population; thus, generalizability 
beyond the current sampling design is presumed to be possible.  In 
generalizability analyses, a fixed facet may produce systematic variance 
that can be modeled and predicted, while a random facet can be quantified 
to account for remaining heterogeneity. 
 To illustrate the difference between CTT and GT analysis, we will 
compare and contrast the estimation algorithms for the coefficients 
favored by each perspective.  As stated earlier, the objective of CTT was to 
improve reliability in measurement.  Its key metric is the reliability 
coefficient, which is the ratio between true score variance and error 
variance: 
 

E2rel = σ2t / (σ2t + σ2e) 
 

where σ2t is true score variance and σ2e is error variance.  The 
generalizability coefficient is also a similarly-constructed “signal-to-noise” 
ratio, but it accounts additionally for multiple sources of “error” as well as 
their interactions with the fixed effects:   
 
 

E2rel* = σ2f / (σ2f + σ2rel*) 
* if r is nested within f:  σ2rel = σ2r(f) 
* if r is crossed with f:   σ2rel = σ2r*f 

 
 
By means of systematically applying these algorithms to the estimated 
variance components shown in Table 17, we are able to compute the GT 
Coefficients displayed in Table 18. 
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Table 18  
Generalizability Theory Coefficients 
Focal and random effects GT coefficients 
σ2(Factor1)/(σ2(Factor1)+σ2(Study)) .23 
σ2(Study)/(σ2(Study)+σ2(Study*Predictor)) .25 
σ2(Predictor)/(σ2(Predictor)+σ2(Factor1*Predictor)) .53 
σ2(Predictor)/(σ2(Predictor)+σ2(Study*Predictor)) .07 
σ2(Factor1*Predictor)/(σ2(Factor1*Predictor)+ 
σ2(Study*Predictor)) 

.07 

 
These numbers are substantially more interpretable than those for the 

raw variance components. For example, consistent with the ratio of more 
than three to one described above, the GT coefficient representing the 
“generalizability coefficient” of the influence of Factor 1 upon effect size 
magnitude over the remaining (“unexplained” or “residual”) variance 
among studies is .234, indicating that this systematic influence does not 
generalize very well across all the other “heterogeneous irrelevancies” or 
“local molar conditions” presumably underlying the residual variance 
among the effect sizes of the studies. This will facilitate the process of 
generalizing causal relations across studies (Sechrest, Parrin, & Bunker, 
1990; Sechrest & Scott, 1993). Contrasting this result with those of the 
hierarchical regression model previously reported for these same data, in 
which the influence of Factor 1 was shown to be “statistically significant” at 
a quite respectable level of p<0.0001 by NHST, indicating that the 
magnitude of this influence is almost definitely greater than zero, we see 
that this influence is rather weak in that it is mostly overwhelmed by the 
unexplained variability among effect sizes that remains.  

 
The Relative Utility of GT versus Conventional Meta-Analytic 
Models 

 
Both GT and conventional meta-analytic models represent special 

cases of variance component models within the general framework of 
hierarchical linear models (Bryk & Raudenbush, 1992).  While 
conventional effects meta-analyses focus on structurally representing 
sources of heterogeneity within a sample of studies on an outcome, GT 
meta-analytic models allow us to quantify the degree of relative influence 
of any given predictor within a sample with respect to the other sources of 
variance.   

This added function is an important one because a “highly significant” 
source of heterogeneity might discourage a meta-analyst from estimating a 
synthetic effect size for a metapopulation (see Figueredo, Black, & Scott, 
this issue), merely because the magnitude of that heterogeneity has been 
shown to be quantitatively greater than zero, and only “very probably” at 
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that.  Thus, GT coefficients may provide the rationale for a researcher to 
aggregate moderately heterogeneous results while leaving open the 
possibility of reporting estimates of systematic variability that should be 
expected across studies.  In short, we are not advocating for one method 
over another, but instead emphasizing that GT-based and more 
conventional meta-analytic models differ in their fundamental objectives, 
where the former are capable of extending beyond basic hypothesis-testing 
procedures to parameter-estimation methods aimed at quantifying the 
amount of systematic heterogeneity among effect sizes in a 
metapopulation, as well as parametrically assessing the relative strengths 
of the particular influences of any partial sources of this variance. 

 
 

Summary and Conclusions 
 
 

In this article, we presented an illustration of the implementation and 
interpretation of Contents Meta-Analysis using a sample of studies on 
retention in higher education.  Through a sequence of steps involving 
exploratory factor analyses, hierarchical multiple regressions, and 
generalizability theory analyses, we were able to establish: 1) that it was 
possible to quantitatively identify patterns in the data that suggested the 
existence of three mutually discriminable research paradigms that 
reflected different theoretical approaches to studying retention in higher 
education; 2) a method for further data reduction by testing the 
explanatory power of these meta-analytic Level 2 Constructs with respect 
to the Level 1 Constructs sampled in the primary research; and 3) that 
there was a non-trivial quantitative impact of the methodological 
approaches captured by these Level 2 Constructs, as well as of the original 
Level 1 Constructs, on the reported outcomes (effect sizes) of the studies 
sampled.  Then, we followed up by applying Generalizability Theory 
analysis to our findings to demonstrate the additional flexibility in data 
analysis and interpretation that researchers using meta-analysis may find 
useful for making decisions about aggregating heterogeneous data. 

We have shown that three methodological approaches used in research 
on retention in higher education produce statistically different outcomes.  
These results have important meta-scientific implications.  Model-driven 
science must be coupled with a rigorous comparison of research 
paradigms to make progress in science.  Although this particular empirical 
example does not specify which model is “more correct”, Contents Meta-
Analysis provides quantitative tools that may be used toward this end.    
For instance, one should ask why the Tinto-Bean model produces lower 
effect sizes than the Institutional Records or Student-Centered models.  
Can the decreased effect size be explained by the higher proportion of 
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population sampled?  What other factors might contribute?  Using this 
method, we gain insight into the characteristics of theoretical approaches 
and their associated methodological tools.  Moreover, we may be able to 
assess how these differences affect our interpretations of data and our 
conclusions.  Thus, this method has both model testing as well as model 
building applications. 

There are, of course, limitations that require attention.  As with any 
implementation of model-driven science, researchers must select relevant 
variables, taking care to avoid omission of those which are key to the 
investigation.  Additionally, careful consideration of the relationships 
among constituent predictors in a model, both measured and unmeasured, 
is necessary to avoid distorted results.  Similarly, meta-analysts are 
responsible for choosing appropriate study characteristics that potentially 
influence the relationships between predictors and outcomes.  We have 
shown that, for many meta-analyses, simply coding basic methodological 
characteristics is not sufficient for answering meta-scientific questions.  
This conventional approach may function well for meta-analyses 
examining strictly controlled drug trials, but for the vast majority of meta-
analytic projects, theory and empirical methods are variable across a 
sample of studies. 

Additionally, there are practical considerations for widely used meta-
analytic tools.  Graphical representations of results, such as forest plots, 
typically show the relative strength of effect sizes across studies, but lack 
information about what might account for those differences.  Using data 
from a Contents Meta-Analysis, we may supplement these conventional 
displays with forest plots representing mean effect sizes for a given 
research paradigm.  Recent initiatives to standardize reporting procedures 
may also need to be amended to include additional methodological 
characteristics that would facilitate a Contents Meta-Analysis.  A short, 
non-exhaustive list of candidate characteristics could include theoretical 
approach, variables and methods sampled and their relationships to 
theoretical approaches, discipline or field, application of technological 
advances, and “ecological” factors such as the types employed in this 
empirical example. 

These methods hold great promise for use in various applied fields, 
such as Program Evaluation, where it is simply not a feasible option to 
avoid reporting an overall synthesis of the meta-analytic findings even 
when a finding of heterogeneity among effect sizes is obtained.  A glib 
answer of “it depends” is simply an insufficient basis for the making of 
rational decisions by policymakers.  If, on the other hand, one is able to 
provide a synthetic effect size for the meta-population, along with the 
associated generalizability coefficient across levels of any dimension of 
study  design  or  analysis  (at the level  of the  primary  research)  that is  
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evidently generating the observed heterogeneity, one can capture both the 
central tendency and the dispersion of this higher-level aggregate of 
trends. 
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