
Journal of Methods and Measurement in the Social Sciences   
Vol. 1, No. 2,52-65, 2010 

52 

Correlation Coefficients: Mean Bias and 
Confidence Interval Distortions 

 
 

Richard L. Gorsuch Curtis S. Lehmann 

Fuller Theological Seminary 
 
  

Non-zero correlation coefficients have non-normal distributions, affecting both means 
and standard deviations. Previous research suggests that z transformation may effectively 
correct mean bias for N's less than 30. In this study, simulations with small (20 and 30) 
and large (50 and 100) N's found that mean bias adjustments for larger N's are seldom 
needed. However, z transformations improved confidence intervals even for N = 100. The 
improvement was not in the estimated standard errors so much as in the asymmetrical 
CI's estimates based upon the z transformation. The resulting observed probabilities were 
generally accurate to within 1 point in the first non-zero digit. These issues are an order of 
magnitude less important for accuracy than design issues influencing the accuracy of the 
results, such as reliability, restriction of range, and N. 
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The observed correlation coefficient, r, is known to slightly under 

estimate the population correlation, ρ, because the distribution of r is 
asymmetrical, being skewed toward zero (Fisher, 1921). Thus, correlations 
that are averaged together will underestimate  in the sense of being 
closer to zero whether positive or negative  the population correlation. 
The skewed distribution of r also affects its standard error, SE r, as the 
standard error is distorted by the skew, as deviations above and below the 
correlation will be unequal. Both of these conditions affect the confidence 
intervals, which should be asymmetrical and based on a non-distorted 
estimate of the standard error. Fisher (1915, 1921, 1924) first 
demonstrated these two problems, noted they are greatest in small 
samples (N < 30), and suggested solutions. He also noted one other 
oddity: the greatest underestimate of the ρ is not, as one might expect, 
with high absolute values but actually is worse for mid-range correlations. 
 Figure 1 and 2 show two distributions, one for a population correlation 
(ρ) of .5 with an N of 20 where the problem is expected to be clear (Figure 
1) and another for a ρ of .2 and N = 100, where the effects are much less 
(Figure 2). Note that the modal and median correlation encountered by 
investigators is considerably above the population ρ for the N = 20. So 
while the average correlation will be underestimated when averaging 
across studies, the average investigator will observe a correlation which 
overestimates the population value, a point that has not been widely 
discussed. 



BIAS AND DISTORTION 

 53

 

 
Figure 1: Histogram of Observed r with a Sample Size of 20 and ρ = .5 

 

 
Figure 2: Histogram of Observed r with a Sample Size of 100 and ρ = .2 
 
Mean bias (underestimation) 
 
The Figures illustrate the mean bias that occurs due to the distribution of 
observed correlations. Fisher (1915, 1924) considered this problem and 
introduced two formulas for correcting r's so that means will most closely 
approximate ρ. The first was so complex it has not been used. Fisher felt 
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the second one was more useful, and labeled it a “z transformation”. 
Fisher developed the z transformation to normalize the distribution 

of the correlation coefficients, allowing average correlations and standard 
deviations to be calculated more accurately. This transformation is 

  
 z  = .5 * (log(1 + r)  –  log(1 - r))           (1) 
 
where r is the observed correlation coefficient. The difference between r 
and z is trivial below .25 – within rounding error to two decimal places   
but increases with the absolute value of the correlation. For example, a .5 
correlation gives a z of .55 and a .8 correlation gives a z of 1.10 Comparing 
these to the figures illustrates how z stretches out the upper range to 
provide a more normal distribution. 
 To average correlations, each observed correlation is transformed to its 
z, the z's are averaged, and the average z is transformed back to a 
correlation by the following formula: 
 
 r  =  (exp(2 * z) – 1)/exp(2 * z) + 1)           (2) 
 
 The evaluation of Fisher's z has always dealt with small samples. Fisher 
used an N of 18 for an example. Others have tested z for small samples 
also. For example, Meng, Rosenthal, and Rubin (1992) used N = 15, Strube 
(1988) 20, and Silver and Dunlap (1987) report that the correction is less 
than rounding error with N's of 30 to 40. These studies did find that z 
overestimated the average correlation, with the over-estimate being 
greatest with a population correlation in the mid range but that the bias of 
z was less than the negative bias of r. As the impact decreases with N, it 
has been assumed that the impact is trivial for larger N's. However, there 
are few tests of this proposed effect of N.  
 Olkin and Pratt (1958) have proposed another equation to correct for 
mean bias to improve on z: 
 
 G(r) =  r (1 +  ((1 – r2)/2 * (N - 3))            (3) 
 
where G(r) is the corrected estimate of the correlation. They show that an 
observed correlation of .5 becomes a corrected correlation of .521 for N = 
20 and .513 for N = 30, but do not give the magnitude of the correction for 
larger sample sizes. In their analyses, Zimmenman, Zumbo, and Williams 
(2003) reported that this correction was only better than Fisher's with N 
less than 20. 
 The discussion above and analyses below are applicable to correlations 
which are random samples from the same population. Another variable 
influencing the results of averaging correlations is the number of 
correlations in the set being averaged. These issues have been addressed 
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(e.g., Alexander, Scozzaro, & Borodkin, 1989; Callender & Osburn, 1988; 
Corey, Dunlap, & Burke, 1998; Hafdahl, 2010; Hafdahl & Williams, 2009; 
Hunter & Schmidt, 2004; Silver & Dunlap, 1987) because of the 
importance for meta-analysis. But those issues are not addressed here. 
The concern of this study is for correlations drawn from the same 
population. 
 
Confidence interval distortion 
 

Confidence intervals give the range within which a specified percent of 
observed correlations would occur for the N used with random samples 
from the same population if the observed correlation is actually the 
population correlation. They are computed by, first, finding the standard 
error (SE) of the statistic. SE's are standard deviations and so 66% of the 
values would, with normal distributions and large Ns, occur between the 
lower bound – found by subtracting the standard error from the statistic – 
and the upper bound – found by adding the SE to the statistic. If other 
confidence intervals are desired, then the SE is multiplied by the 
appropriate value from a normal curve table to give the desired percent. 
Applied to a correlation the confidence intervals are: 
 
   CI = r – a * SE r to r + a * SE r         (4) 
 
where a is the distance needed in z score units for the desired percent 
within half of the bounded interval. The confidence intervals are usually 
based on an estimate of the SE for the statistic. The lower and upper 
intervals derive their meaning from the assumption that the SE describes a 
normal distribution so that probabilities based on the normal curve (and 
its derivatives such as t) can apply.  
 Figures 1 and 2 show that the skew of the distributions of non-zero 
correlations also affects the SE r (which in this case is the SD of the 
distribution of r's). Except for a ρ of zero, there are more extreme 
correlations on the side towards 0.0. This distorts confidence intervals 
distributions as compared to a normal curve. One such distortion is that 
the lower and upper CI's are not equally distant from the mean 
correlation. Instead the lower 2.5% bound is a greater absolute distance 
from the mean than the upper 2.5% bound. 

A second distorting effect arises from using this formula to estimate the 
standard error: 

 
 SE r = (1 –r2)/(N - 1)              (5) 
 
Using this formula gives the standard deviation of the errors for the 
observed r, assuming r's are normally distributed. However, the 
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distribution of r is skewed and so the formula is an under estimate of the 
standard deviations for a given correlation. But how distorted is the 
standard error by this formula which assumes a normal distribution? 
 Fisher (1915, 1921) noted that the z transformation gives a statistic 
which has an identical SE regardless of the value of z or r. The formula is: 
 
 SE z = 1 / (N - 3)               (6) 
 
This differs from the SE of a correlation whose error decreases as ρ 
increases. Perhaps more important, it provides lower and upper CI's 
which, when translated back to correlations, are asymmetrical with the 
lower CI being farther from the correlation than the upper CI. 

Using the z transformation for lower and upper bounds of a confidence 
interval requires the a for formula (4). Three values for a have been 
suggested. First, classical literature (e.g., Guilford, 1956) suggested using 
the value from the z table. Current literature commonly draws the value 
from a t table to correct for sample size. However, Cohen, Cohen, West, 
and Aiken (2003), suggest that a be set at a “good enough” approximation 
in some circumstances, given the possible problems from assuming r is ρ 
and in estimating SE r. For 95% CI's, the z table gives 1.96, the t table 
value varies, for example, from 2.045 for N = 20 and 1.98 for N = 100, and 
Cohen et al. recommend 2 for all N's, which is what the other values all 
round to if one decimal place accuracy is “good enough.” 
 While the studies of the z transformation have examined the mean 
distortion, the SE r and resulting confidence intervals have been ignored. 
Both classical and current texts (e.g., Cohen, et al., 2003; Guilford, 1956) 
recommend Fisher's z transformation be used for CI's, but the need for 
this recommendation has seldom been investigated empirically. Neither 
have the several recommendations for a for this situation.1 
 
Sample size 

 
Fisher (1921) noted the problems from the non-normal distributions 

were most important with small N's. His major example (1921) used an N 
of 18. The simulation studies investigating these affects have investigated a 
variety of small sizes, typically 10 and 20. The conclusions from past 
research noted above directly apply to such small samples, and that 
Fisher's transformation can produce positively biased estimates for them. 
The math and the studies generally agree that the problems became less 
with larger N's. Strube (1988) did suggest that as the number of 

                                                 
1 For the reliability coefficient alpha– which can be considered a correlation coefficient – other 
procedures for confidence intervals have been proposed which might be applied to correlations, 
but Romano, Kromrey, and Hibbard (2010) found all to give poorer confidence intervals than 
Fisher's z transformation. 
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correlations being averaged increased, z may become as biased as r but in 
the opposite direction. But there are no examples with N's > 30 to provide 
data on the seriousness of the problems with larger N's, and whether the 
seriousness is the same for the mean bias and CI distortion. 
 
The current study 

 
The purpose of the current study is to provide more information on the 

seriousness of the problems of mean bias and confidence interval 
distortion. We expect to replicate the mean bias magnitude, and replicate 
that adjustments by z transformation and by the Olkin and Pratt (1958) 
adjustment reduce mean bias with Olkin and Pratt (1958) being the better. 
SE r estimates can be calculated in several ways, including by formula 
from the observed correlation and by z transformation, and these are 
examined for their impact on confidence intervals with the expectation 
that z transformations will be more accurate. The analyses begin with 
typical N's used previously (20 and 30) to replicate and extend previous 
findings. N's of 50 and 100 are examined to evaluate how quickly the 
impact on mean r and confidence intervals drops. To provide perspective, 
the impacts of these problems are briefly compared to the impact of 
attenuation due to reliability or restriction of range, as well as the 
discrepancies in percentage tails for confidence intervals. 

 
Method 

To create a sufficient data set for this study, 5000 samples were 
constructed for each combination of ρ and N. For each case, X (raw score) 
and E (error) were created using the SPSS random number generator 
(Mersenne Twister) for z scores (normally distributed with Mean = 0 and 
SD = 1). These two variables were utilized to compute Y using the formula: 

 
 Y =  ρ * X +  (1 - ρ2) * E             (7) 
 
where ρ is the population correlation coefficient. X and Y were then 
correlated. 
 The N's selected were 20 and 30 to overlap with prior studies and 50 
and 100 to provide data on larger samples. The selected population 
correlations were .2 for a level less effected by skew, .5 as the middle range 
of correlations which are most impacted (Zimmerman, Zumbo, & 
Williams, 2003), and .8 as a higher correlation with a greater skew. 
 The sample descriptive statistics were computed as the simple mean, 
median, standard deviation, skew, and kurtosis of each sample of 
correlations. The formulas given above were used to compute the other 
needed statistics. 
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Analyses and Results 

 
Descriptive statistics of the correlation coefficients for each ρ and N 

combination are presented in Table 1. These follow the pattern as 
displayed in Figures 1 and 2. The displacements of the mean from the 
median are the expected result from the skew of each. The skew increases 
with ρ. but decreases with N.  
 
Table 1  
Descriptive Statistics of the Distribution of Observed r 

  Mean Median SD/SE Skew Kurtosis 

      N = 20     
ρ = .2 0.196 0.205 0.222 -0.271 -0.113 
ρ = .5 0.490 0.512 0.180 -0.648 0.471 
ρ = .8 0.791 0.806 0.091 -1.044 1.658 

      N = 30     
ρ = .2 0.196 0.203 0.178 -0.237 -0.051 
ρ = .5 0.492 0.506 0.143 -0.526 0.322 
ρ = .8 0.795 0.806 0.070 -0.884 1.154 

      N = 50     
ρ = .2 0.195 0.200 0.136 -0.205 -0.017 
ρ = .5 0.494 0.502 0.110 -0.499 0.438 
ρ = .8 0.798 0.804 0.053 -0.752 1.072 

      N = 100     
ρ = .2 0.200 0.201 0.097 -0.107 -0.052 
ρ = .5 0.497 0.501 0.077 -0.282 0.021 
ρ = .8 0.799 0.802 0.036 -0.532 0.649 

 
Kurtosis also varied, being negative with low correlations and positive 

with high correlations. This effect also decreased with increasing N. The 
past literature has not noted this shift which can also lead to poorer 
estimates of variability. 

The difference between the mean and median suggests that the average 
investigator sees more values greater than the population value than lower 
than that value. If the mean and median were the same, 50% of the 
investigators would report a correlation above the ρ. But with a skewed 
distribution, more see a higher correlation. Table 2 gives the percent of 
investigators who would report a correlation above ρ. The worst case is 
with N = 20, when 57% would report a correlation above the population.5, 
and which drops to 53% for a large N. 
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Table 2  
Discrepancies from 50% of the Percentage of Scores above Mean r and ρ 

  N = 20 N = 30 N = 50 N = 100 

 Mean r 
ρ = .2 1.88% 2.06% 1.16% 0.54% 
ρ = .5 4.92% 3.72% 2.84% 2.26% 
ρ = .8 6.74% 6.18% 4.68% 3.86% 

 ρ 
ρ = .2 0.94% 0.88% 0.04% 0.46% 
ρ = .5 2.82% 1.68% 0.62% 0.62% 
ρ = .8 2.66% 3.20% 2.98% 2.80% 

 
To examine mean bias of correlations as a function of ρ and N and the 

effect both of Fisher and of Olkin and Pratt transformations, each estimate 
of the population correlation – averaged r, Fisher z transformation 
averaged r, and Olkin and Pratt adjustment – was computed. Each 
estimate was then subtracted from the ρ. The discrepancies are in Table 3. 
At ρ = .2 the discrepancies for all three estimates are almost non-existent. 
The underestimate for averaged r is greatest for ρ = .5. As the N increases, 
the effect is less – approximately rounding error at N = 30 and even 
smaller for larger N's regardless of ρ. 

 
Table 3 
Discrepancies of Mean Estimated Correlations from Population Value 

  N = 20 N = 30 N = 50 N = 100 

  Unadjusted r 
ρ = .2 -0.004 -0.004 -0.005 0.000 
ρ = .5 -0.010 -0.008 -0.006 -0.003 
ρ = .8 -0.009 -0.005 -0.002 -0.001 

  z transformation 
ρ = .2 0.006 0.002 -0.001 0.002 
ρ = .5 0.012 0.006 0.002 0.001 
ρ = .8 0.007 0.005 0.004 0.002 

  G(r) 
ρ = .2 0.001 -0.001 -0.003 0.001 
ρ = .5 0.000 -0.001 -0.002 -0.001 
ρ = .8 -0.001 0.000 0.001 0.001 

Note: G(r) is a bias correction formula developed by Olkin and Pratt (1958).  
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While the z transformation average is slightly closer than the average r, 
in Table 3 it is positively biased. It would not be unreasonable to average 
these two estimates but that is not necessary as the Olkin and Pratt 
adjusted r's of Table 3 are within absolute value of .003 of the true value. 

To address the issue of confidence interval distortion, two tables were 
developed. Table 4 gives the discrepancies of the estimated SE r from the 
observed average standard deviation of the correlations given in Table 1. 
The estimates computed were by the formula for the SE r, equation (5), 
computed by assuming the observed r is the population correlation. The 
second was computed from Fisher's z transformation using (6). The 
greatest discrepancy was for the formula, which consistently gave 
underestimates. These were up to -.01 with N = 20. Both could be 
considered accurate within rounding error with larger Ns although, 
overall, the z transformation gave more accurate SE's while having a slight 
but consistent positive bias. 
 
Table 4 
Discrepancies of Standard Errors from Sample Standard Deviation 

  N = 20 N = 30 N = 50 N = 100 

  SE r 

ρ = .2 -0.013 -0.006 -0.001 -0.002 
ρ = .5 -0.013 -0.005 -0.004 -0.001 
ρ = .8 -0.007 -0.003 -0.001 0.000 

  SE z → r 

ρ = .2 0.007 0.005 0.004 0.000 
ρ = .5 0.003 0.002 0.000 0.000 
ρ = .8 0.002 0.001 0.000 0.001 

 

Note: The above discrepancies are calculated as the computed value minus the standard 
deviation. SE r is the mean of the standard errors of the correlations, as calculated by the 
formula, SE r = (1-r2)/(n-1) for each correlation coefficient. SE z → r was calculated by 
taking the mean z  1/x(n-3). These endpoints were then back converted into r values 
and the range between the endpoints was divided by 2. As a characteristic of the z 
transformation, the upper and lower ranges were not equal; however, the small difference 
between the ranges had a trivial impact. 
 

Table 5 was computed by computing the lower and upper 95% 
confidence intervals, and then computing the percent of samples which 
actually fell below or above the lower or upper boundary. These were 
computed with four procedures, that from the SE r formula using a “good 
enough” value of 2 and also a value from the t table, and that computed by 
Fisher's z transformation, again for a value of 2 and for the t. The former is 
a symmetrical CI procedure, with the lower boundary being the same 
distance below the observed r as the upper boundary is above the r. 
Fisher's z transformation gives asymmetrical intervals. Table 5 contains 
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the discrepancies from the 2.5% that each should produce. 
 

Table 5 
Discrepancies from 2.5% of Observed Correlations Outside of 95% 
Confidence Intervals based on r and z Standard Errors 

 N = 20 N = 30 N = 50 N = 100 
 Lower Upper Lower Upper Lower Upper Lower Upper 

 CI r 
ρ = .2 1.36 -0.54 0.64 -0.60 0.32 -0.82 0.24 -0.32 
ρ = .5 2.38 -1.64 1.62 -1.46 1.50 -1.20 0.86 -0.92 
ρ = .8 2.70 -2.42 2.10 -2.40 1.70 -2.00 0.70 -1.50 
 CI r(t) 
ρ = .2 0.68 -1.20 0.42 -0.88 0.30 -0.88 0.32 -0.20 
ρ = .5 1.72 -2.02 1.30 -1.68 1.48 -1.24 0.94 -0.84 
ρ = .8 2.28 -2.48 1.76 -2.42 1.68 -2.02 0.76 -1.46 
 CI z 
ρ = .2 0.26 0.80 0.00 0.36 -0.22 -0.38 -0.20 0.10 
ρ = .5 -0.14 0.94 -0.46 0.86 -0.18 0.12 -0.36 0.40 
ρ = .8 -1.10 1.46 -0.98 0.88 -0.66 0.20 -0.60 0.06 
 CI z(t) 
ρ = .2 -0.22 0.16 -0.24 0.08 -0.28 -0.38 -0.02 0.16 
ρ = .5 -0.68 0.30 -0.60 0.40 -0.20 0.04 0.26 0.50 
ρ = .8 -1.44 0.76 -1.14 0.58 -0.72 0.14 -0.52 0.12 

 

Note: Percentiles are discrepancies of observed correlations from the expected value of 
2.5%. Critical values were averaged across the 5000 replications within each condition. 
The standard error used for CI r and CI r(t) was computed with the formula, SE r = (1 – 
r2)/(n-1). CI r was calculated as r  (2 * SE r). CI r(t) was calculated as r  (t * SE r) with 
t having df = N - 1. The standard error used for CI z and CI z(t) was computed with 
Fisher’s formula, SE z = 1/(n-3).  CI z was calculated as z  (2 * SE z). CI z(t) was 
calculated as z  (t * SE z).  with t having df = N - 1 
 

Table 5 shows that the symmetrical CI's give up to double the 2.5% in 
the lower region and down to almost 0.0 in the higher region. Using a t 
table does reduce the discrepancies in the lower region at the expense of 
increasing the discrepancies for the upper area with N's of 20 to 30. These 
discrepancies make symmetrical intervals almost unusable. While the t 
table was slightly better with N's of 20 to 30, the differences at large N's 
were small. The z transformed values have a better split, with about the 
same percent in the lower region as in the upper region, and occasionally 
gives 94% confidence intervals rather than 95% with smaller samples; with 
larger samples the total percentage is accurate to within one-half a 
percentage point. 
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Both procedures for confidence intervals are better behaved with larger 
N's. As some of the formula CI's are off by almost three percentage points 
with smaller N's and is still off by 1.5 points with the largest N, non-
symmetrical CI's using Fisher's z transformation are the more accurate of 
the two. Given the similar accuracy of the SE's in Table 4, the advantage of 
z transformations can be attributed to the fact that it provides non-
symmetrical estimates, which is particularly useful with skewed data. 

Using the “good enough” procedure of multiplying the SE by 2 – one 
digit accuracy  works fairly well. But it is so simple to use t and t does 
.provide a minor improvement, it seems better to use the 3 digit accuracy 
for calculations, provided we remember that, as is illustrated by Table 5, 
the result is only accurate to plus and minus 1 of the probably, that is, the 
2.5% tail is actually 2 to 3%. 

Table 5 supports three conclusions. First, the upper boundary of the CI 
from SE r approach is too high. Second, the CI's from the z approach are 
more accurate. Third, unlike the mean bias corrections which are not 
needed with N's of 30 or more, the z approach gave better results even for 
N's of 100. 

 
Discussion 

 
The major conclusion from this study is that the seldom investigated 

effects of the skewed distributions on confidence intervals of r has more 
impact on statistics than the widely investigated impact on the mean 
correlation. The symmetrical confidence intervals over-estimate the 
frequency of cases below the lower boundary – up to 2 to 3 percentage 
points – while under estimating cases above the upper boundary. This 
problem is not eliminated by simply increasing the N. Fisher's z 
transformation procedure gives more accurate results, particularly for the 
upper boundary. In large part, this is due to the greater interval from the 
correlation to the lower confidence boundary as compared to the interval 
from the correlation to the upper confidence boundary. We recommend 
that confidence intervals be based on Fisher's z transformation. 

The confidence intervals were based on the observed correlation for the 
estimated population ρ. Our results found no problem with doing so. 

The mean estimates were within rounding error when N's were greater 
than 30. Although there are special instances in meta-analysis, which are 
not a topic within this study, where more precise estimates of r may be 
warranted, generally mean estimates can be considered accurate. There is 
one potential problem about means. With the negative skew, the majority 
of users observe a correlation that is farther from 0.0 than the population 
value. Whether or not this is sufficient to distort the discussion of 
correlations in a substantive area remains to be seen. 

The results of the analysis of bias in the mean correlation replicated 
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previous findings that there is a small mean bias with small N's. We extend 
those conclusions to larger N's than previously investigated. With larger 
N's, the bias is minimal – generally no more than rounding error. We 
support others who have suggested that the bias is trivial. At the 
conclusion of investigating the applicability of mean bias correction 
procedures, Silver and Dunlap (1987) report that the correction is less 
than rounding error with N's of 30 or more. Zimmernman, Zumbo, and 
Williams (2003) also suggested that the differences between the 
procedures were trivial with a larger N. Our data agree with their 
conclusion. 

Table 6 was developed to put the mean bias into perspective. It 
contains the underestimate of ρ when, first, the reliability of a scale 
decreases, based upon the attenuation due to low reliability formula. 
Second, Table 6 contains the attenuation of the observed correlation when 
the range of scores in the sample is restricted. These results show that the 
problem of mean bias is probably one of the least important 
considerations when reviewing or designing a study. Attenuation can 
generally be offset by using a slightly more reliable measure, by using a 
broader sample, or by increasing the sample size. 

 
Table 6 
Comparison of the Effect of Attenuating Artifacts 
Adjustment ρ = .2 ρ = .5 ρ = .8 

Reliability     
rxx = .7 -0.033 -0.082 -0.131 
rxx = .8 -0.021 -0.053 -0.084 
rxx = .9 -0.010 -0.026 -0.041 

Range Restriction    
RR = 80% -0.042 -0.129 -0.288 
RR = 90% -0.021 -0.063 -0.136 
RR = 95% -0.010 -0.031 -0.067 

 
In Zimmerman, et al. (2003) analysis of the impact of errors in 

correlations on significance levels, the most discrepant p's were generally 
within 1 point of the first non-zero digit, except in the case of outliers or 
distributions mixing in log normal distributions. In this study, the CI's p's 
based on Fisher's z were also accurate within 1 point of the first non-zero 
digit. Nothing in this study would dispute the conclusion that the effects of 
mean bias and confidence interval distortions are not important so long as 
one remembers that the reported p's are accurate to the first non-zero digit 
only. Reporting p's with more digits implies more accuracy than our data 
generally warranted, and should be discouraged. 
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