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Multidimensional Scaling (MDS) has been used as a growth mixture modeling technique 
in psychological and education research in recent years. This note focuses on a detailed 
explanation of interpreting the scale values in MDS growth analysis. Since scale values 
from MDS growth analysis are based on the Euclidean metric, we attempt to offer some 
guidance on interpretation of the scale values in terms of percentage of change in growth 
between each time interval. This approach is illustrated with a hypothetical example, and 
it can be used in actual research settings. 
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 During recent decades, researchers have witnessed significant progress 
in growth modeling techniques, from both theoretical and data-analytical 
perspectives. The newer statistical models include latent growth model 
(e.g., Collins & Sayer, 2001), finite growth mixture model (e.g., Muthen & 
Muthen, 2000), and multilevel linear model (e.g., Little, Schnabel, & 
Baumert, 2000; Singer & Willett, 2003) for the analysis of longitudinal 
data in education and psychology. Today, these methodologies are 
commonly applied when studying growth and change of human behaviors. 
 In the current literature, growth mixture modeling represents the most 
common method of dealing with latent growth classes because it provides 
a way to empirically identify the number of latent classes in a population 
and to estimate the growth trajectory within each latent class. A less well-
known growth mixture modeling is the multidimensional scaling (MDS) 
latent growth profile analysis that also allows researchers to estimate 
latent trajectory classes and to study their relations to either covariates or 
outcome measures (Ding, Davison, & Petersen, 2005). Conceptually, the 
MDS latent growth model has similar analytic goals as growth mixture 
models (GMM) or the group-based approach (Nagin, 1999)--to determine 
the optimal number of latent growth groups and the shape of the 
trajectory that best fits the data for each group. Then, outcome measures 
and covariates can be incorporated into the analysis with respect to the 
different latent growth groups. The MDS model differs, however, from 
GMM or group-based approaches in terms of how to present growth rates, 
identifying the latent groups, and the assumptions underlying its use. 
Briefly, a latent group in the MDS model is called a “latent growth profile”, 
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which is represented by a single dimension. The dimension is estimated 
from a distance model and consists of a set of scale values that indicate the 
shape of the growth trajectory. A hypothetical example of growth patterns 
in student mathematical achievement is shown in Figure 1, where Profile 1 
indicates a linear growth and Profile 2 indicates a down-up growth. Each 
profile represents a subgroup of individuals who manifest a particular 
growth trajectory in mathematic achievement. The use of dimension as an 
indication of latent group presence has been studied by Davison and 
colleagues (Davison, Gasser, & Ding, 1996; Davison, Kuang, & Kim, 1999; 
Kim, Davison, & Frisby, 2007).   
 In MDS growth analysis, MDS is based on distance models, and the 
distance between any pair of adjacent time points (tj and tj+1) represents a 
growth rate for that time interval, as shown in Figure 1. That is, the 
differences between scale values of adjacent time points indicate the 
change (i.e., slope) for a given time interval, as shown in Figure 1.  That is, 
the differences between scale values of adjacent time points indicates the 
change (i.e., slope) for a given time interval, and the time intervals do not 
need to be evenly spaced; the growth rate is the slope for each particular 
interval.   If the time unit between time 1 and time 2 is one month but the 
time unit between time 3 and time 4 is one year, then slope1 indicates 
growth for one month and slope2 is the growth for one year. Moreover, 
measurement units over time do not need to be in the same metric. The 
reason for no such requirement is that the growth rate is based on the 
scale value in MDS, which has the common Euclidean metric over time. 
Put another way, a scale value of, say, 1.4 at time t has the same meaning 
for a scale value of, say, 2.6 at time t+1, which indicate an equivalent 
distance between two time points, as shown in Figure 1, regardless of 
whether time interval is equal or unequal. Thus, a particular set of scale 
values in MDS growth analysis indicates the changes over time for a 
specific behavior during a particular time frame.   
 The overall rational for use of MDS model in growth analysis has been 
articulated in previous research (e.g., Ding, et al., 2005). In this 
methodological note we focus on an explanation in more detail, of the 
interpretation of the scale values of the MDS growth analysis so that 
researchers or practitioners may have a better grasp on the issue. MDS 
scale values are difficult to interpret because they have no upper or lower 
bound and can range from zero to ±∞.  In our example, the interpretation 
of scale values of 1.4 at time t and of 2.6 at time t+1, is not quite intuitive 
and it is hard to evaluate the magnitude of change. All we know is that the 
change is positive (i.e., growth), with a difference of 1.2 in scale values 
between these two time points. Therefore, it would be good if we have a 
familiar metric that can be used to evaluate magnitude of change based on 
scale values. In this note, we discuss the percentage of change in scale 
value as a metric to evaluate the magnitude of change. 
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Since the scale values in the spatial distance model are of Euclidean 
space, indicating distance between two points, they satisfy the following 
axioms (Davison, 1983): 
 
   d(a, b ) ≥ 0,   (1) 
   d(a, a) = 0,   (2) 
   d(a, b) = d(b, a)  (3)  
 
where d represents distance between points a and b. Thus, we can assume 
that when the scale values between any pair of time points are equal, they 
indicate no change. On the other hand, when there is a difference in scale 
values between any pair of time points, it indicates that there may be a 
change in the behavior under inquiry.   

 

 
Figure 1. A hypothetical example of growth profiles of student mathematic 
achievement in a two-dimensional solution of MDS growth analysis.   
 

Table 1 shows the scale values of two growth profiles (i.e., a two-
dimensional solution) depicted in Figure 1. In an attempt to offer some 
guidance to researchers on interpretation of scale values that reflect 
changes over a particular time period in a two-dimensional solution, we 
can calculate the percentage of change in scale values between any pair of 
time points in the following fashion:  
 1. Calculate the difference in scale values between time t and time t + 1 
for each time interval. In our hypothetical example, a set of three 
difference scores, one for each time interval, is calculated for each growth 
profile, as shown in the middle part of Table 1.  
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 2. Calculate the total change in scale values over the entire time period 
under study using the absolute difference in scale values since the sign 
only indicates direction of change. This is a total change score for each 
profile. 
 3.  Calculate the percentage of change for each time interval by dividing 
the difference score by the total change score. The resulting number 
indicates the percentage of change with respect to the total amount of 
change, as shown in the lower part of Table 1.  
 Thus, based on these calculations for our hypothetical example of 
growth profiles, we can say that for Profile 1, there is a 31% change from 
time 1 to time 2, a 36% change from time 2 to time 3, and a 33% change 
from time 3 to time 4. The overall change for individuals who resemble 
Profile 1 is positive, with an average of 33% change over time, assuming 
time 1 is the initial time point.  Similarly, for Profile 2, there is a negative 
change of 34% from time 1 to time 2, a negative change of 27% from time 2 
to time 3,   and a positive change of 39% from time 3 to time 4. The overall 
change for individuals who resemble Profile 2 is negative, with an average 
of negative 7% change over time. Although there is an increase from time 3 
to time 4, such an increase is not large enough to counterbalance the 
impact of negative change.   
   
Table 1 
Scale values, difference scores, and percentage of change in MDS growth 
analysis 

Time Profile 1 Profile 2 

T1 0.52 1.36 
T2 1.63 0.08 
T3 2.90 -0.96 
T4 4.10 0.54 

Difference in Scale Values 

T2 - T1 1.11 -1.28 
T3 - T2 1.27 -1.04 
T4 - T3 1.20 1.50 

Total Change 3.58 3.82 

% of Change 

T1 to T2 0.31 -0.34 
T2 to T3 0.36 -0.27 
T3 to T4 0.33 0.39 

Note: Total change score is based on the absolute difference in scale values 
between two time points. A negative sign only indicates the direction of 
change.  
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In conclusion, this note offers, in more detail, a method for calculation 
of growth rate in terms of percentage based on scale values in MDS growth 
analysis. The percentage changes are easier to understand than other types 
of scores such as z-scores. Although the method is not very sophisticated 
in terms of novelty, it has the advantages of being (1) simple and (2) more 
intuitive in interpretation of the magnitude of change over time. The 
hypothetical example is realistic enough to offer researchers some useful 
guidance on how to determine the magnitude of change between each time 
interval and of the overall change rate. Note that the percentage of change 
for each time interval is interpreted only with respect to the total amount 
of change in scale values rather than to the absolute change in behaviors. 
It is recommended to convert scale values in MDS growth analysis into 
percentage of changes as a metric for interpretation.  
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