
Journal of Methods and Measurement in the Social Sciences,
Vol. 12, No. 2, 56-94, 2021

56

Binary Classification: An Introductory Machine
Learning Tutorial for Social Scientists

Vivian P. Ta

Lake Forest College
Leonardo Carrico

Illinois Institute of Technology
Lake Forest College

Arthur Bousquet

Lake Forest College

A barrier that prevents many social scientists from pursuing big data research is the lack of
technical training required to assemble and organize big data. In an effort to address this
barrier, we provide an introductory tutorial into machine learning for social scientists by
demonstrating the basic steps and fundamental concepts involved in binary classification.
We first describe the data and libraries required for analysis. We then demonstrate data
cleaning methods, feature engineering, the model-building process, model assessment,
and feature importance. Last, we discuss the ways in which social scientists can use
machine learning to complement inference-based approaches and how it can contribute to
a richer understanding of social science.

Keywords: machine learning, big data, classification, tutorial

In the age of big data, researchers across many disciplines have begun to
obtain massive amounts of data from a wide range of sources to assess
behavioral patterns and make predictions. Big data refers to the “...large
amount of data in the networked, digitized, and sensor-laden, information-
driven world” (Chang & Grady, 2019). Although big data has been defined
in several ways, it is typically characterized by large volumes of data that are
generated at a high speed and come in a wide variety of formats (Kitchin &
McArdle, 2016). This is starkly different from the structured, “small” sample
data that has been historically ubiquitous in the social sciences (Florescu et
al., 2014; Kitchin, 2015). The amount of published journal articles using big
data has been increasing and there has been growing interest in machine
learning and other methods used to analyze big data (Monaro et al., 2018;
Sartori et al., 2019). Although this growth has been extensive in many fields,
it has been slower in many areas of social science due to a number of
technological, human, and organizational barriers (Lazer & Radford, 2017).

This is problematic for several reasons. A great deal of data is “now being
produced, collected, and analyzed at unprecedented speed, breadth, depth,
and scale” (Metzler et al., 2016) which may present social scientists with
more opportunities to conduct large scale research on topics that were once
considered exceptionally difficult and time-consuming to investigate. Much
of big data are behavioral in nature and warrant the involvement of social
scientists in data analysis. And, perhaps most importantly, big data has

TA ET AL.

57

raised “a number of complex new social and ethical issues” (Kwok, 2019)
that cannot be adequately addressed without insights from the social
sciences.

One of the barriers that prevent many social scientists from being
involved in big data research is the lack of technical training that is required
for collecting, organizing, and analyzing big data, among others (Adjerid &
Kelley, 2018). The lack of data science skills also precludes educators from
teaching social science students the skills that are necessary to navigate big
data. As such, researchers have not only called for greater interdisciplinary
cooperation, but also greater accessibility and inclusion of data science
skills into the social sciences.

Although a number of resources have been created to address this issue,
they are not always easily accessible, inclusive, or appropriately adapted for
social scientists. For instance, tutorials tend to assume the reader has
coding skills, or do not address the components that social scientists are
generally more interested in such as the interpretability and validity of
models. In addition, classes may require funding for enrollment and
workshops are often constrained around specific dates.

In an effort to address this barrier, we sought to provide a gentle,
introductory tutorial for social scientists on machine learning—a method
that is commonly used to analyze big data—in the current paper.
Specifically, our tutorial focuses on the main concepts involved in machine
learning and demonstrates a commonly-used machine learning technique:
binary classification. This is a supervised learning approach which focuses
on predicting the class or category (y) from inputs (x). Our goal in this
tutorial is to predict whether a message was persuasive or not persuasive
based on certain linguistic features of the message. As such, we will be
building models that learn how the input variables (the linguistic features
of each message) relate to the output (whether a message was persuasive or
not), which is then used to build a predictive model that can accurately
predict if a given message was persuasive or not persuasive. We also assess
feature importance—the degree to which a particular input variable
contributed to this predictive task.

Although binary classification is only one out of many machine learning
techniques, we chose to provide a tutorial on binary classification for several
reasons. Classification is a widely-used technique in machine learning that
has many applications that are relevant to the social sciences such as
document classification, sentiment analysis, fraud detection, and many
more. It is a relatively straightforward analysis and lays the foundation for
more complicated machine learning techniques, making it a suitable topic
to introduce social scientists into machine learning. Moreover, determining
how a set of input variables relate to a categorical output variable is an
analytic strategy commonly used in the social sciences (e.g., logistic

MACHINE LEARNING TUTORIAL

58

regression), making classification applicable and of interest to a broad range
of social science researchers.

The Current Tutorial

The goal of this tutorial is to guide social scientists through the basic
steps and fundamental concepts involved in machine learning. This tutorial
is appropriate for social scientists who know very little about machine
learning, as well as social scientists who are somewhat familiar with big data
analytics and are looking to refine their understanding of machine learning
fundamentals.

We begin by describing the data used in this tutorial and the libraries
that are required for analysis. We then demonstrate data cleaning methods,
feature engineering, the model-building process, model assessment, and
feature importance. We end by discussing the ways in which machine
learning complement the inference-based approaches that are commonly
used in the social sciences and how it can contribute to a richer
understanding of social science. Because it is impractical to go in-depth into
every aspect of machine learning in one tutorial, resources and citations
have been placed throughout the tutorial for additional guidance and
information.

This tutorial is run and presented using Scikit-learn in Python version
3.7. Although proficiency in Python is helpful, it is not required for
understanding or successfully completing this tutorial. The data and scripts
used in this tutorial are provided on our Github repository1 as well as in the
Supplementary File. We will be referencing the corresponding files and code
that are associated with each step of this tutorial throughout the paper. For
helpful resources on Python and Scikit-learn, see Supplementary A.

The Data

Our data come from /r/ChangeMyView2, a community on Reddit in
which users post their views on any topic (original posters, or OPs) and
invite others to debate them. People who debate the OP reply to the OP’s
original post (referred to as “repliers”) and state the reasoning behind their
beliefs. The OP will award a delta (∆) to particular replies that changed their
original views (see Supplementary B for examples). /r/ChangeMyView is a
moderated community such that all users are required to adhere to its rules
of conduct regarding post/reply quality, response timeliness, and civil
discourse.

1 https://github.com/amac-lfc/CMV/tree/v1.1 or https://github.com/amac-

lfc/CMV/archive/1.1.zip

2 https://www.reddit.com/r/changemyview/

TA ET AL.

59

The Python Reddit API Wrapper was used to pull the data (Boe, 2015).
The initial dataset consisted of 4,820,112 replies from 104,081 original posts
that were posted between 2013 and 2018. We also obtained each reply’s
metadata including whether a reply was persuasive or not (i.e., awarded a
delta or not), which original post (parent post) a given reply came from, the
author username of a given reply, and others (see classifiers/main.py for
the list of all metadata). The raw data, as well as the processed data, can be
downloaded from our Github repository1 (see our note regarding the raw
and processed datasets at the end of the Feature Engineering).

Libraries

A number of libraries must be installed into Python to execute all of the
functions involved in this tutorial. These libraries include Numpy, Pandas,
Scikit-learn, and Imbalanced-learn. They are included at the very
beginning of each script for installation. See Supplementary C for more
information about these libraries.

Data Cleaning

As one might expect, the data must be cleaned and assessed for quality
before analysis. This typically involves determining if the data are accurate,
corrupted, or missing. The corrupt or missing cases could be removed from
the dataset entirely or be imputed or modified. Choosing which data
cleaning technique(s) to use would depend on the research question at
hand, the type of the data at hand, and individual data cleaning practices.
See Kelleher, Mac Namee, & D’arcy, (2015) and McCallum (2012) for more
information regarding data cleaning.

After assessing our data, it was determined that our data required the
following (Supplementary E):
1. Removing empty replies: replies that show up as "[deleted]" or

empty are typically the result of a user deleting their reply after
posting it, a moderator deleting the reply after it was posted due to a
violation of /r/ChangeMyView’s rules, or a user deactivating their
account sometime after posting the reply. We remove these replies
given that no content was provided.

2. Transforming special characters into their textual equivalent: For
example, "¾" might be transformed into "three out of four" and "÷"
might be transformed into "divided by". These transformations allow
algorithms to process symbols appropriately and with the correct
meaning.

3. Removing punctuation: This allows all of the text to be processed
uniformly and ensures that different forms of the same word are not
treated separately (e.g., Hi.; Hi?; Hi!).

MACHINE LEARNING TUTORIAL

60

Feature Engineering

An important strategy for increasing the predictive accuracy of any
machine learning model is through feature engineering. This involves
creating new input features from the same existing raw data. Given that
machine learning algorithms use these input features for learning, it is
important to properly transform the data into a form that is compatible with
a given machine learning algorithm. Many feature engineering techniques
exist including binning (transforming a continuous or categorical variable
into different groups/categories), one-hot encoding (transforming a
categorical variable into multiple variables with binary values, such as 0 and
1, to denote the presence or absence of that variable for a given observation
of data), feature spitting (extracting particular facets of a variable and
representing it as a separate variable), and others. For additional
information regarding feature engineering techniques, see Zheng and
Casari (2018).

Deciding which feature engineering technique to apply on the data will
depend on the kinds of information that should be highlighted for optimal
learning and classification. In other words, features are engineered to allow
algorithms to focus on and learn information that provides the most signal
for learning. Having domain knowledge facilitates the identification and
isolation of such information.

Because our goal was to assess if a reply was persuasive or not persuasive
based on its linguistic features, we conducted feature engineering by
extracting certain information from each reply. Specifically, we extracted
the frequency with which terms from certain linguistic categories appeared
in each reply. The linguistic categories chosen were ones that contribute to
a message’s persuasive appeal based on previous research. We also used
previous research to construct dictionaries that contained terms that were
relevant to each linguistic category.

In all, 25 features were engineered. These input features, plus a feature
indicating whether a given reply was awarded a delta or not, comprise the
dataset that will be used to train a machine learning model to classify
whether a given reply was persuasive or not. More information about these
features can be found in Supplementary D.

To obtain the cleaned dataset with all features engineered, the raw data
needs to be downloaded and createData() needs to be run in
classifiers/main.py (Supplementary E). It is important to note that this step
can take more than a week to process and complete due to the sheer size of
the data. Therefore, the processed data is also available to be downloaded

TA ET AL.

61

directly 3 . The sections below explain the remaining steps written in
classifiers/main.py.

Feature Scaling

Once feature engineering is complete, the next step is to scale the
features given that they vary in units, range, and magnitude. This is similar
to the process of standardizing variables in inference-based approaches.
There are different methods for scaling features in machine learning. For
instance, z score standardization can be applied to transform the mean to
equal 0 and the standard deviation equal to 1. Or, normalization can be
applied to transform values into a fixed range, typically between 0 and 1.
The scaling method used depends on the problem at hand and the machine
learning algorithm used. See Zheng and Casari (2018) for further
information. In this tutorial, we normalized our features to a range between
0 and 1 (Supplementary F).

Imbalanced Classes

An issue with our data was the imbalanced number of replies that were
not persuasive (non-delta-winning replies) and the number of replies that
were persuasive (delta-winning replies). After the data were cleaned, there
were 4,807,072 replies that were not persuasive and 13,040 replies that
were persuasive. Having imbalanced classes can erroneously skew
prediction accuracy, leading the model to predict the class that is simply
more prevalent. In our case, our model could simply predict that any given
reply is not persuasive and still obtain an overall prediction accuracy over
90%. Thus, not addressing class imbalances could produce a biased model
with a high rate of false negatives and prevent researchers from building
meaningful predictive models.

Common strategies for correcting class imbalances include class
weights, random down-sampling the majority class, and random up-
sampling the minority class. Class weights is a method that assigns
different weights to the majority and minority classes and penalizes
misclassification by increasing weight for the minority class (i.e., persuasive
replies) and reducing weight for the majority class (i.e., replies that were not
persuasive; see King and Zeng, 2001). Random down-sampling the
majority class involves randomly omitting observations from the majority
class to prevent it from over-influencing the learning algorithm. Random
up-sampling the minority class involves randomly replicating observations
from the minority class to reinforce its effect.

3 https://bit.ly/2AA6odD

MACHINE LEARNING TUTORIAL

62

The particular class imbalance strategy or strategies that is/are
ultimately implemented should be appropriate for the data and research
question at hand. Users may implement multiple strategies or compare
model performance indices across different strategies to identify the
strategy that produces the most optimal results. In the current tutorial, we
implemented two class imbalance strategies (Supplementary F).

In the first strategy, we applied random down-sampling of the majority
class by randomly omitting replies that were not persuasive to obtain a more
comparable sample of non-persuasive replies (n = 20,000). We then
implemented a slightly modified version of the random up-sampling the
minority class technique: we increased the number of persuasive replies
from 12,138 to 20,000 by using Synthetic Minority Oversampling
Technique (SMOTE; Chawla, Bowyer, Hall, & Kegelmeyer, 2002) which
combines the features of multiple persuasive replies to create new replies.
Thus, the new additions are not simply copies of existing persuasive replies.
SMOTE usually outperforms random up-sampling and improves prediction
accuracy. In the second strategy, we implemented class weights to balance
our classes. We compared model performance indices between these two
strategies and assess if one strategy outperformed the other in the Assessing
Model Performance section.

Preparing Data for Training and Testing

The next step involves partitioning the data for training and testing. An
algorithm will use the training data to fit the model — that is, it will use the
training data to learn how the various linguistic features (i.e., input
variables) relate to the output (i.e., whether a reply was awarded a delta or
not) in order to build a predictive model that predicts if a given reply was
persuasive or not persuasive. The test data will be used to validate the
model’s performance on unseen data — a sample of the overall data that the
model has not already assessed during the learning process. Thus, the test
data is only used to evaluate model performance after a model is trained
with the training data. It is important to use unseen data in testing as this
will provide more reliable model performance estimates that are not
inflated (James, Witten, Hastie, & Tibshirani, 2013). Several methods exist
that can be used in this process and we will outline the methods that are
commonly used below.

Bootstrapping involves taking random samples (with replacement) of
equal size repeatedly from the training data. A model is fitted on each
sample and model performance is conducted on the data that were not
included in the given sample. This process is repeated for each bootstrapped
sample and model performance metrics are aggregated across each
iteration. This method can address model overfit, reduce variance, and
improve model accuracy. A greater number of samples is more ideal but is

TA ET AL.

63

more computationally expensive. See James et al. (2013) and Kuhn and
Johnson (2013) for additional information.

The validation set approach (also known as data splitting) involves
splitting the data into a training set and a test (holdout) set. Using the split
function in Scikit-learn, researchers might apply a 70/30 split to assemble
the training and test datasets. That is, 70% of the data would be randomly
selected and used for training while the remaining 30% would be used for
testing. Other ratio splits, such as 60/40 and 80/20, can also be used.
Because there are no straightforward rules regarding which ratio split is the
best to use, researchers must consider how much data is available, the type
of model that is being trained, and the trade-offs associated with each ratio
split to make this decision. For instance, having more training data provides
more opportunities for an algorithm to build an accurate predictive model
whereas having more test data allows researchers to better assess how well
the model generalizes to other unseen data. If researchers are looking to fit
a very complex model that needs a great deal of data to learn from, an 80/20
split might be more appropriate compared to a 70/30 or 60/40 split. Or, if
researchers are prioritizing generalizability from their model, a 60/40 split
might be more appropriate compared to a 70/30 or 80/20 split. Whatever
ratio is used, it is important that the training and test datasets are both
representative of the entire data and that the test dataset is large enough to
produce statistically meaningful outcomes. See Raschka (2018) for
additional information regarding ratio splits.

The data may also be split into training, validation, and test datasets
(e.g., 70/15/15; 80/10/10; 60/20/20). The validation dataset is used to
evaluate model performance from the training dataset while adjusting its
hyperparameters to optimize performance. In other words, after training on
the training dataset is complete, the researcher may evaluate the model on
the validation dataset and tweak the model to improve its performance. The
tweaked model is then evaluated on the test dataset. See Kuhn and Johnson
(2013) for additional information.

The validation set approach is simpler and less expensive on resources
compared to other methods. However, it can yield variable model
performance metrics depending on which data points are included in the
training and test sets. If the training set is small, this method is also prone
to overestimation of model performance metrics.

The k-fold cross-validation (CV) approach addresses the limitations of
the validation set approach. It involves splitting the data into k equal-sized
samples (or folds). One sample is used for testing the model and the
remaining k - 1 samples are used for training the model. This process can be
repeated k number of times with each sample serving as the test set. The
resulting model performance metrics from each iteration are then
aggregated. This method tends to yield more accurate, less inflated, and less
variable test error estimates. Because of this, it is typically recommended

MACHINE LEARNING TUTORIAL

64

when dealing with small datasets (see James et al., 2013 for additional
information). In addition, this method is computationally less expensive
compared to leave-one-out cross-validation. A value of 5 or 10 are
commonly used for k as these values tend to yield estimates that are not too
high in bias or variance (see Kuhn & Johnson, 2013 for additional
information).

In the leave-one-out cross-validation approach, one data point is used
for validation while the remaining n - 1 data points are used for training. A
prediction is made for the single data point and this process is repeated n
times. In other words, every data point is used for validation, and model
performance metrics are aggregated. Training sets are almost identical in
size compared to the entire dataset and results from each iteration are
similar. This method is less biased compared to k-fold CV and is less prone
to overestimating model performance metrics. However, it can be very time
consuming with very large datasets given that n models must be fitted.
LOOCV also produces test error estimates that have higher variance than k-
fold CV. See Sammut and Webb (2010) for additional information.

Readers should consider the strengths and limitations of each method,
along with logistical factors such as time availability and the size of the data,
to determine which approach to use. Due to the size of our data, we conduct
and demonstrate 5-fold cross-validation in this tutorial. Feature scaling,
SMOTE, and class weights are executed in classifiers/main.py
(Supplementary F).

Model Building

The next step involves building a model by selecting an algorithm to
assess the training dataset for the learning/training process. The output of
the training process is a model that has learned how the input and output
variables relate to one another to predict if a reply was persuasive or not.
This model is then tested on the test dataset in order to assess its
performance. This process echoes the mechanisms involved in associative
learning (or conditioning) in which learned behaviors are a result of
reinforced stimuli and responses (Shanks, 1995). In fact, the concept of
reinforcement learning—a common training approach in machine learning
that is based on the maximization of reward (Sugiyama, 2015)—is rooted in
B.F. Skinner’s theory of operant conditioning: a learning process in which a
behavior is modified through the use of reinforcement or punishment
(Staddon & Cerutti, 2003).

Typically, several models are built using different algorithms, and model
performance metrics are reported and compared with one another. The
algorithms selected for testing should be appropriate for the data and task
at hand. In other words, given that each algorithm has their respective
assumptions, strengths, and weaknesses, the researcher should

TA ET AL.

65

systematically select algorithms to test. See Brownlee (2019) and
Microsoft’s guide4 for more information regarding various algorithms and
algorithm selection.

We built 8 different models using the following algorithms that were
most appropriate for classification: Decision Tree, Random Forest,
Gradient Boosting, Gaussian Naive Bayes, Bernoulli Naive Bayes, Support
Vector Machine (SVM), Ada Boost, and Logistic Regression. In the interest
of space, we will not delve into each algorithm’s framework, strengths, and
weaknesses in the current tutorial but encourage readers to refer to the
citations provided for each algorithm in Supplementary G, along with
Scikit-learn’s list of classification algorithms5 for additional information.
Model building is executed in classifiers/main.py and all 8 models are
defined in classifiers/models.py lines 84-95 (Supplementary G).

Hyperparameter Optimization

Before the training process begins, the hyperparameters of each model
must be tuned to minimize error, help estimate model parameters, and
optimize its learning process. Hyperparameters are configurations of a
model that influence the quality and speed of a model’s learning process.
These hyperparameters cannot be estimated ahead of time from data and
thus require manual tuning. Examples of hyperparameters include the
number of decision trees that will be constructed and the depth of each tree
in a random forest model, and penalty in a logistic regression model.

Each algorithm will have its own set of hyperparameters to tune and the
list of hyperparameters for a given algorithm can be found on the Scikit-
learn website. However, the optimal value for a given hyperparameter or
set of hyperparameters in one problem or dataset may not be the same in a
different problem or dataset. Users may be tempted to use the practical
hyperparameter values that are provided by default for all models in Scikit-
learn, but practical does not always translate to optimal (Buitinck et al.,
2013). How, then, does one identify the best value or set of values for a given
hyperparameter or set of hyperparameters, respectively?

A common method is performing a grid search. In short, a grid search
conducts an exhaustive search on every combination of a model’s
hyperparameter values to identify the most optimal set of hyperparameters.
We conducted a grid search on all 8 models (Table 1) and then used these
hyperparameters for each of our models in training and testing. The code
for the grid search can be found in classifiers/grid_search.py.

4 https://docs.microsoft.com/en-us/azure/machine-learning/how-to-select-

algorithms

5 https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

MACHINE LEARNING TUTORIAL

66

Table 1
Results of grid search

Logistic SVM

C 0.001 degree 1

Penalty l2 Gamma 0.1

solver liblinear kernel ’rbf’

 shrinking True

ADA Boost Gradient Boosting

algorithm ’SAMME.R’ learning_rate 0.1

learning_rate 0.5 loss ’deviance’

n_estimator 1600 max_features ’sqrt’

k_neighbors 4 max_leaf_nodes None

sampling_strategy 1.0 max_samples_leaf 1

 max_samples_split 10

 n_estimator 200

Decision Tree Random Forest

criterion ’gini’ criterion ’gini’

max_depth 10 max_depth None

max_features None max_features ’sqrt’

max_leaf_nodes 50 max_leaf_nodes None

min_impurity_
decrease

0.0
in_impurity_

decrease
0.0

max_samples_leaf 1 max_samples_leaf 4

max_samples_split 5 ax_samples_split 2

splitter ’best’ boostrap True

Gaussian Naive Bayes Bernouilli Naive Bayes

var_smoothing 0.1 alpha 0.001

priors [0.02, 0.98] class_priors
[0.88,
0.12]

 fit_prior True

Assessing Model Performance

Each model’s performance can be evaluated using various model
performance metrics which will aid in the selection of the best model. We
describe the most commonly used metrics below. Selecting or prioritizing
particular metrics for evaluation will depend on factors such as the type of

TA ET AL.

67

model being used, the strengths and limitations of a particular metric, and
the overarching goal of the project (see Murphy, 2012 for more information
regarding model selection).

Confusion Matrix

Figure 1 illustrates our confusion matrix. The y-axis marks the actual
results — whether a reply was awarded a delta (1; the positive label) or not
(0; the negative label) — and the x-axis marks the predicted results — the
model’s predictions of whether a given reply was awarded a delta (1; the
positive label) or not (0; the negative label). Thus, the matrix reports a given
model’s true positive rate, which is the proportion of cases in which actual
positives were predicted as positives; true negative rate, which is the
proportion of cases in which actual negatives were predicted as negatives;
false positive rates (Type I error), which is the proportion of cases in which
actual negatives were predicted as positive; and false negative rates (Type
II error), which is the proportion of cases in which actual positives were
predicted as negative. Formulas for each of these rates are reported in
Supplementary H.

Figure 1. Confusion matrix components. 1 = delta awarded; 0 = no delta
awarded.

With regard to our models, true positives represent the rate in which the
model predicted that a reply was awarded a delta when it actually had been
awarded a delta; true negatives represent the rate in which the model
predicted that a reply was not awarded a delta when it actually had not been
awarded a delta; false positives represent the rate in which the model
predicted that a reply was awarded a delta when it actually had not been
awarded a delta; and false negatives represent the rate in which the model
predicted that a reply was not awarded a delta when it actually had been
awarded a delta. Figure 2 illustrates the confusion matrices for all 8 models

MACHINE LEARNING TUTORIAL

68

using SMOTE whereas Figure 3 illustrates the confusion matrices for all 8
models using class weights (Supplementary I).:

Figure 2. Confusion matrices for all 8 models using SMOTE.

TA ET AL.

69

Figure 3. Confusion matrices for all 8 models using weighted classes.

MACHINE LEARNING TUTORIAL

70

Additional Model Performance Metrics

Other model performance metrics can also be obtained from a confusion
matrix to further assess a model’s performance. We describe metrics that
are commonly used below and formulas can be found in Supplementary H.

Accuracy is the accuracy rate of an overall model which is the proportion
of correct predictions made. It is often used in classification and is an
effective performance metric when classes are equal in size. Precision is the
proportion of positive predictions that are actually positive and is an
effective metric when there are class imbalances as it calculates the accuracy
of the minority class.

Recall/Sensitivity is the proportion of actual positives that were
correctly identified as such. Unlike precision, recall/sensitivity illustrates
the rate of positive predictions that are missed. It is also an effective metric
when there are class imbalances. When used with precision, true negatives
are never taken into account. Thus, this should only be used when the
detection of the negative class is not important.

Specificity is the proportion of actual negatives that were correctly
identified as such. Thus, it measures how well your model identifies

TA ET AL.

71

negative cases. When used with recall/sensitivity, all entries in the
confusion matrix are taken into account which is an advantage when the
rate of true positives, true negatives, false positives, and false negatives
should all be assessed.

F1 Score is the harmonic mean of precision and recall/sensitivity. The
harmonic mean is often used as a measure of central tendency for ratios or
rates as it equalizes the weights of each observation. As such, F1 Scores are
an effective performance metric when there is a high rate of true negatives,
when false negatives and false positives equally impact a model, and the
addition of more data does not impact model outcomes.

In an Area Under the Receiver Operator Characteristic Curve (AUC-
ROC Curve), the ROC curve graphs the true positive rate and false positive
rate at different classification thresholds. The AUC measures the entire area
under the ROC curve and reports the probability that a given model ranks a
random positive observation more highly than a random negative
observation. In short, the AUC is an aggregate measure of a model’s
performance across all classification thresholds and tells us how well a given
model discriminates between two classes. AUC scores range from 0 to 1 with
scores closer to 1 indicating more accurate predictions. An advantage of the
AUC is that it focuses on how well the predictions are ranked instead of the
actual prediction itself. However, it treats false positives and false negatives
equally and thus does not take into account the costs between these two
types of error.

Precision-Recall (PR) Curve plots a model’s precision and recall on the
y- and x- axis, respectively, for different thresholds. Because it does not use
the number of true negatives, it is advantageous for class-imbalanced
datasets.

These various model performance metrics can be examined and
compared with each other to aid in the selection of the best model. But how,
exactly, does one choose the best model(s)? There is no straightforward
answer. The best model(s) will depend on the nature of the data, the various
problems and goals at hand, and the time and resources available. In this
tutorial, since we are prioritizing classification accuracy, we will primarily
focus on choosing the model with the best accuracy. Other model
performance metrics, however, can be prioritized or taken into
consideration depending on the overarching goal of the project. See Murphy
(2012) and Seliya et al. (2009) for more information regarding model
selection and classifier performance metrics.

We used 5-fold CV to calculate accuracy scores using class weights
(Figure 4) and SMOTE (Figure 5; Supplementary I). Next, we compare
model performance across the two class imbalance strategies and examine
if a particular class imbalance strategy outperformed the other.

MACHINE LEARNING TUTORIAL

72

Figure 4. Accuracy scores of each model using 5-fold cross
validation using class weights.

TA ET AL.

73

Figure 5. Accuracy scores of each model using 5-fold cross validation using
SMOTE.

The accuracy scores across the two class imbalance strategies ranged
from .65 to .71. The Logistic Regression and Random Forest models
produced the highest aggregate accuracy score when using class weights
(69%) whereas the Gradient Boosting model produced the highest
aggregate accuracy score when using SMOTE (70.2%). At this point, it may
be tempting to automatically select the Gradient Boosting model to report
or use for subsequent classification tasks. However, testing many models
and selecting only the model with the best accuracy score to use and report
without taking into account the accuracy of the other models is referred to
as model-hacking. This is similar to the concept of p-hacking in inference-
based approaches and can lead to biased and flawed conclusions.

Two methods are typically recommended to avoid model-hacking: The
first involves comparing all model outcomes with one another. Observing
similar performance outcomes across all models would suggest that such
results are reliable and robust, especially if similar metrics were obtained
using different algorithms. The second involves combining several different
classifiers into an ensemble model which typically performs better than

MACHINE LEARNING TUTORIAL

74

single models. For more information regarding ensemble methods, see
Brown, 2010.

Looking across both class imbalance strategies, the lowest and highest
accuracy scores only differed by 6 percentage points, indicating that all of
our models produced similar accuracy scores. As such, if we were to select
one model to use for subsequent classification tasks, we should be fairly
confident choosing the Gradient Boosting model using SMOTE as it
produced the highest accuracy score.

What if accuracy scores greater than 70.2% are desired? Several
procedures may help increase accuracy by optimizing learning and
classification. Examples include the use of different feature engineering
strategies, adding or removing input variables, and implementing ensemble
methods. See Patterson and Gibson (2017) for various procedures that can
help increase accuracy scores. The code to train and test each model,
compute confusion matrices, and compute accuracy scores is in
Supplementary I.

Feature Importance

Social scientists may naturally be interested in identifying the input
variables that were most important in the prediction process for a given
model. In machine learning, this can be done by investigating feature
importance. In addition to providing useful information about a model,
examining feature importance can help simplify the model, enhance model
interpretability, improve model performance, mitigate overfitting, and
decrease the computational cost of the training process. For the sake of
brevity, we generate feature importance only for the Random Forest model
using SMOTE (Supplementary J). However, it is beneficial to compare
feature importance among all models. Again, observing similar patterns
among input variables across all models would indicate greater reliability
and confidence in a given input variable’s importance and role in
classification.

Results are illustrated in Figure 6 with higher numbers indicating
greater importance. The top 5 most important features in this model appear
to consist of terms related to dominance, arousal, and valence. If the same
pattern appears in the other models, this may suggest that certain levels of
emotionality may substantially impact what makes a message persuasive.
On the other hand, examples and formatting features such as the number of
bullet points, bolded words, and exclamation points, do not appear to
substantially impact what makes a message persuasive.

TA ET AL.

75

Figure 6. Feature ranking of the Random Forest model using SMOTE.

We measured feature importance via Entropy importance (Breiman,

2001). Other techniques can also be used to generate feature importance
such as Local Interpretable Model-Agnostic Explanations (LIME; Ribeiro,
Singh, & Guestrin, 2016), InterpretML (Nori, Jenkins, Koch, & Caruana,
2019), and Shapley Additive Explanations (SHAP; Lundberg & Lee, 2017).
For more information regarding feature importance and model
interpretablility, see Kaur et al. (2020).

Discussion

In the current paper, we provided an introductory tutorial into machine
learning for social scientists by demonstrating the basic steps and
fundamental concepts involved in binary classification. We built several
predictive models that predicted whether a textual reply was persuasive or
not persuasive. Our accuracy scores ranged from 65% to 70.2% and we
identified features that played a larger role in this prediction task.

Social scientists tend to adhere to a more theory-driven approach to
analyzing data and, as such, primarily use statistical models to make
inferences regarding the relationships between variables. In contrast, big
data research typically utilizes techniques that emphasize predictive
accuracy such as machine learning. Put another way, inference-focused
approaches seek to explain while prediction-focused approaches seek to
predict (Bzdok, Altman, & Krzywinski, 2018). Incorporating prediction-
focused approaches into social science research can complement inference-

MACHINE LEARNING TUTORIAL

76

focused approaches, and, together, these two approaches can provide for a
stronger and well-rounded understanding of social science.

For example, given that model performance tends to be better in training
than in testing, this provides a level of protection against reporting more
inflated and overly-optimistic estimations (Yarkoni & Westfall, 2017). P-
hacking can be minimized through the collective examination of
performance among all models that were tested, as well as the use of
ensemble methods. In addition, the general emphasis on predictive
accuracy enables the "general-purpose learning algorithms to find patterns
in often rich and unwieldy data (Bzdok et al., 2018)." And, evaluating both
inference and prediction can provide insightful conclusions that cannot be
garnered using inference or prediction alone. In our case, researchers can
determine which linguistic features make a message persuasive and also
apply this to predict whether a message will be persuasive or not.

In prediction-focused approaches, the standard model building
procedure involves building the model first and then testing its performance
on unseen data using test datasets, cross-validation, etc. Thus, the process
of examining how well the model generalizes and replicates onto new data
are at least partially addressed and "built-in". Generalizability and
replication in inference-based approaches, on the other hand, are addressed
when researchers test the same statistical model on newly collected data.
This process can take years to accomplish — but only if it is even being done
in the first place. Thus, prediction-focused approaches can contribute to
“maximize accuracy and minimize replicability issues” (Orrù, Monaro,
Conversano, Gemignani, & Sartori,, 2020).

In addition to fostering greater involvement of social scientists in the
world of big data, knowledge of machine learning techniques can better
enable social scientists to facilitate the translation of empirical findings into
real-world applications and interventions. For example, we created an app6
based on the analyses that were conducted in the current tutorial. In this
app, users are prompted to input any message into the textbox. The machine
learning model that we trained in this tutorial then analyzes the user’s
message and reports the probability of that message being persuasive. It
also illustrates how the given message compares with the average
persuasive message. Along with practical uses, this can help cultivate
engagement and enhance the accessibility of social science research with the
general public. Taken together, this can have important implications in
shaping laypeople’s perceptions and support for science (Rose, Markowitz,
& Brossard, 2020) as well as bolster the role of social science in big data.

6 http://cmvcheck.amac.xyz/

TA ET AL.

77

Author Notes. The authors would like to thank Liam Connell and Enrique
Treviño for their support and feedback. Funding was provided by the James
Rocco Quantitative Data Research Scholarship.

References

Adjerid, I., & Kelley, K. (2018). Big data in psychology: A framework for

research advancement. American Psychologist, 73, 899–917.
Boe, B. (2015). PRAW: The Python Reddit API Wrapper. URL

https://praw.readthedocs.io/en/latest
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Brown, G. (2010). Ensemble learning. In C. Sammut & G. I. Webb (Eds.),

 Encyclopedia of machine learning (pp. 312–320). Boston, MA,
Springer US.

Brownlee, J. (2019). A tour of machine learning algorithms. URL
https://machinelearningmastery.com/a-tour-of-machine-
learning-algorithms/

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel,
O., . . . Varoquaux, G. (2013). API design for machine learning
software: Experiences from the scikit-learn project. arXiv preprint
arXiv:1309.0238.

Bzdok, D., Altman, N., & Krzywinski, M. (2018). Points of significance:
Statistics versus machine learning. Nature Publishing Group.

Chang, W. & Grady, N. (2019). NIST Big Data Interoperability
Framework: Vol. 1, Definitions, Special Publication (NIST SP),
National Institute of Standards and Technology, Gaithersburg, MD,
https://doi.org/10.6028/NIST.SP.1500-1r2

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002).
Smote: Synthetic minority over-sampling technique. Journal of
Artificial Intelligence Research, 16, 321–357.

Florescu, D., Karlberg, M., Reis, F., Del Castillo, P. R., Skaliotis, M., &
Wirthmann, A. (2014, June). Will ‘big data’ transform official
statistics? In European Conference on Quality in Statistics, Vienna
(pp. 2-5).

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
introduction to statistical learning (Vol. 112). Springer.

Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., & Wortman
Vaughan, J. (2020). Interpreting interpretability: Understanding
data scientists’ use of interpretability tools for machine learning, In
Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, Honolulu, HI, USA, Association for Computing
Machinery.

Kelleher, J. D., Mac Namee, B., & D’arcy, A. (2015). Fundamentals of
machine learning for predictive data analytics: Algorithms,
worked examples, and case studies. MIT press.

King, G., & Zeng, L. (2001). Logistic regression in rare events data.
Political Analysis, 9, 137–163.

https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

MACHINE LEARNING TUTORIAL

78

Kitchin, R. (2015). The opportunities, challenges and risks of big data for
official statistics. Statistical Journal of the IAOS, 31, 471-481.

Kitchin, R., & McArdle, G. (2016). What makes Big Data, Big Data?
Exploring the ontological characteristics of 26 datasets. Big Data &
Society, 3. https://doi.org/10.1177/2053951716631130

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26).
Springer.

Kwok, R. (2019). AI and the social sciences used to talk more. Now
they’ve drifted apart. KelloggInsight. URL https://insight.kellogg.
northwestern.edu

Lazer, D., & Radford, J. (2017). Data ex machina: Introduction to big
data. Annual Review of Sociology, 43, 19-39.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting
model predictions, In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long
Beach, California, USA, Curran Associates Inc.

McCallum, Q. E. (2012). Bad data handbook: Cleaning up the data so
you can get back to work. O’Reilly Media, Inc.

Metzler, K., Kim, D. A., Allum, N., & Denman, A. (2016). Who is doing
computational social science? Trends in big data research (White
paper). London, UK: SAGE Publishing. https://doi.org/
10.4135/wp160926.

Monaro, M., Galante, C., Spolaor, R., Li, Q. Q., Gamberini, L., Conti, M.,
& Sartori, G. (2018). Covert lie detection using keyboard dynamics.
Scientific Reports, 8, 1–10.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective.
MIT press.

Nori, H., Jenkins, S., Koch, P., & Caruana, R. (2019). InterpretML: A
unified framework for machine learning interpretability. arXiv
preprint arXiv:1909.09223.

Orrù, G., Monaro, M., Conversano, C., Gemignani, A., & Sartori, G.
(2020). Machine learning in psychometrics and psychological
research. Frontiers in Psychology, 10, 2970.

Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner’s
approach. O’Reilly Media, Inc.

Raschka, S. (2018). Model evaluation, model selection, and algorithm
selection in machine learning. arXiv preprint arXiv:1811.12808.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust
you?”: Explaining the predictions of any classifier, In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, California, USA,
Association for Computing Machinery.

Rose, K. M., Markowitz, E. M., & Brossard, D. (2020). Scientists’
incentives and attitudes toward public communication. Proceedings
of the National Academy of Sciences, 117, 1274-1276.

Sammut, C., & Webb, G. I. (2010). Leave-one-out cross-validation.
Encyclopedia of Machine Learning, 600-601. Springer.

https://insight.kellogg/

TA ET AL.

79

Sartori, G., Pace, G., Orrù, G., Monaro, M., Gnoato, F., Vitaliani, R.,
Boone, K. B., & Gemignani, A. (2019). Malingering detection of
cognitive impairment with the b test is boosted using machine
learning. Frontiers in Psychology, 10, 1650.

Seliya, N., Khoshgoftaar, T. M., & Van Hulse, J. (2009). A study on the
relationships of classifier performance metrics. In 21st IEEE
International Conference on Tools with Artificial Intelligence (pp.
59-66), IEEE.

Shanks, D.R. (1995). The psychology of associative learning. Cambridge
University Press.

Staddon, J.E., & Cerutti, D.T. (2003). Operant conditioning. Annual
Review of Psychology, 54, 115-144.

Sugiyama, M. (2015). Statistical reinforcement learning: modern
machine learning approaches. CRC Press.

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation
in psychology: Lessons from machine learning. Perspectives on
Psychological Science, 12, 1100–1122.

Zheng, A., & Casari, A. (2018). Feature engineering for machine
learning: Principles and techniques for data scientists. O’Reilly
Media, Inc.

MACHINE LEARNING TUTORIAL

80

Supplementary A

Python is a preferred programming language for machine learning as it
possesses a great deal of pre-existing libraries that are available for
researchers to quickly and efficiently build and run machine learning
models. It is also well-equipped to handle large amounts of data, is open-
source, and considered relatively simple and easy to learn compared to
other programming languages. In addition, Scikit-learn is considered the
most comprehensive machine learning package in Python and widely used
by data scientists (see Hao & Ho, 2019, for a review of the Scikit-learn
package). For helpful Python-related resources including installation, see
Rhoads, 2019.

Hao, J., & Ho, T. K. (2019). Machine learning made easy: A review of scikit-

learn package in python programming language. Journal of
Educational and Behavioral Statistics, 44, 348–361.

Rhoads, S. (2019). A brief introduction to python for psychological science
research. American Psychological Association. URL:
https://www.apa.org/science/about/psa/2019/07/python-
 research

TA ET AL.

81

Supplementary B

An example of an original post on /r/ChangeMyView.

An example of a delta being awarded to a reply.

MACHINE LEARNING TUTORIAL

82

Supplementary C

Numpy (Oliphant, 2006; Walt et al., 2011) is used for working with arrays
and matrices, as well as performing mathematical operations on them. This
is used in the feature engineering stage to create input features.

Pandas (McKinney, 2010) is a software library used mainly for data
manipulation and analysis. It is used to import the data (which are
contained in CSV files) into Python, as well as to view, inspect, select, filter,
sort, join, combine, and clean data.

Scikit-learn (Pedregosa et al., 2011) is used to build the machine learning
models. It takes the array features from NumPy and turns them into
prediction functions that returns a probability of whether a reply would
receive a delta or no delta.

Imbalanced-learn (Lemaître et al., 2017) offers re-sampling techniques that
are used to correct for class imbalances in the data.

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning. Journal of Machine Learning Research, 18, 1–5.

McKinney, W. (2010). Data structures for statistical computing in Python,
In Proceedings of the 9th Python in Science Conference, SciPy.

Oliphant, T. E. (2006). A guide to Numpy (Vol. 1). Trelgol Publishing USA.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Et al. (2011).
Scikit-learn: Machine learning in Python. The Journal of Machine Learning
Research, 12, 2825–2830.

Walt, S.V.D., Colbert, S. C., & Varoquaux, G. (2011). The Numpy array: A
structure for efficient numerical computation. Computing in Science &
Engineering, 13, 22–30.

TA ET AL.

83

Supplementary D

• High arousal: Terms that are “exciting” or elicit high
arousal (e.g., abduct, devil, lunatic, stalker)

• Medium arousal: Terms that are moderately arousing
(e.g., forget, moldy, scorch, unlucky)

• Low arousal: Terms that are “calm” or elicit low arousal
(e.g., opt, retain, stall, west)

• High valence: Terms that are positive (e.g., achieve,
consent, friend, marry)

• Medium valence: Terms that are neutral (e.g.,catwalk,
dusk, retina, wavy)

• Low valence: Terms that are negative (e.g., syringe, taunt,
prison, kill)

• High dominance: Terms that represent high degrees of
control (e.g., care, independent, mindful, rise)

• Medium dominance: Terms that represent moderate
degrees of control (e.g., flea, childless, analyst, cane)

• Low dominance: Terms that represent low degrees of
control (e.g., mournful, adrift, abandon, dementia)

• Certainty: Terms denoting certainty/assertiveness (e.g.,
truly, unquestionably, precisely, undeniably)

• Extremity: Terms denoting how strongly an attitude or
judgment is (e.g., extremely, very, seriously, strongly)

• Examples: Providing an example (for example, for
instance, i.e., e.g.)

• Hedges: Terms/phrases used to soften a message (e.g.,
slight chance, suggests, some possibility, usually not,
seems to me)

• Self-references: Terms referring to oneself (e.g., I, me, we,
us, mine, myself, our)

• Lexical diversity: Type token ratio (number of unique
words divided by total number of words)

• Character count: Total number of characters

• Reply frequency: Number of replies spawned from a given
reply

• Nested count: Number of comments that preceded a given
reply

• Link count: Number of links provided • Quotes: Number
of quotes included

• Questions: Number of question marks

• Bold: Number of boldface terms

MACHINE LEARNING TUTORIAL

84

• Average words per sentence: Average number of words
per sentence

• Enumeration: Number of bullet points

• Exclamation: Number of exclamation points

TA ET AL.

85

Supplementary E

def createData():
inputs = ["/home/shared/CMV/RawData/Comments_MetaData.csv",

"/home/shared/CMV/RawData/Comments_TextData.csv",
"/home/shared/CMV/RawData/Submissions_MetaData.csv",
"/home/shared/CMV/RawData/Submissions_TextData.csv"]

outputs =
['/home/shared/CMV/SlimmedData/Slimmed_Comments_Met

aData.csv',
'/home/shared/CMV/SlimmedData/Slimmed_Comments_

TextData.csv',
'/home/shared/CMV/SlimmedData/Slimmed_Submissions_Meta

Data.csv',
'/home/shared/CMV/SlimmedData/Slimmed_Submissions_TextD

ata.csv']

columns_lst = [["name", "parent_id", "author", "link_id"],

["author", "id", "parent_id", "body"],
["url", "id", "author"],
["author", "id", "title", "selftext"]]

slimmer.slim_all(inputs, outputs, columns_lst)

input =
'/home/shared/CMV/SlimmedData/Slimmed_Comme
nts_TextData.csv'

deltas_file =
'/home/shared/CMV/SortedData/delta_winning_ids.txt'
deltas_data_file =
'/home/shared/CMV/SortedData/delta_comments_data.csv'
nodeltas_data_file =
 '/home/shared/CMV/SortedData/nodelta_comments_data.csv'

labeler.get_deltas(input, deltas_file)

labeler.create_labels(input, deltas_data_file, nodeltas_data_file,
deltas_file)

get input files

MACHINE LEARNING TUTORIAL

86

delta_input =
"/home/shared/CMV/SortedData/delta_comments_data.csv"
nodelta_input =
"/home/shared/CMV/SortedData/nodelta_comments_data.csv"
word_list_input = "../data/word_list.csv"

make output files

output_delta =
"/home/shared/CMV/FeatureData/all_delta_feature_data.csv"
output_nodelta =
"/home/shared/CMV/FeatureData/all_nodelta_feature_data.csv"

generate features

delta_features, nodelta_features =
features.generateFeature([delta_input, nodelta_input], [output_elta,
output_nodelta, word_list_input, ‘con’)

print("Writing Features to File with Pandas")
delta_features = pd.DataFrame(data=delta_features,
columns=None) nodelta_features =
pd.DataFrame(data=nodelta_features, columns=None)

delta_features.to_csv(output_delta, index=False)
nodelta_features.to_csv(output_nodelta, index=False)

TA ET AL.

87

Supplementary F
nodelta_file =
"/home/shared/CMV/FeatureData/all_nodelta_feature_data.csv"
delta_file =
"/home/shared/CMV/FeatureData/all_delta_feature_data.csv"

nodelta_data =
pd.read_csv(nodelta_file)
delta_data =
pd.read_csv(delta_file)

Merge the data set and add labels = 0 (No Delta) 1
(Delta)

data = engineer.merge([nodelta_data, delta_data])

Split the data between features and labels

X, y = data[: , :-1], data[:, -1]

Normalize all the features
between 0 and 1

scaler = MinMaxScaler()
X=scaler.fit_transform(X)

print("Shape of all features:", X.shape)
X_train, X_test, y_train, y_test = engineer.train_test_split (X, y,
test_size=0.33)

Oversampling with SMOTE

X_train,y_train = engineer.smote(X_train, y_train, k_neighbors= 2,
sampling_strategy=0.8)

To use class weights to balance the classes instead of SMOTE:

class_weight=compute_class_weight(class_weight='balanced',classes=n
p.unique(y),y=y) class_weight={0:class_weight[0],1:class_weight[1]}
print(class_weight)

sample_weight = np.zeros(len(y_train))
sample_weight[y_train==0]=class_weight[0]
sample_weight[y_train==1]=class_weight[1]

MACHINE LEARNING TUTORIAL

88

Supplementary G

Decision Tree:
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1,

81–106.

Random Forest:
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

Gradient Boosting:
Friedman, J. H. (2002). Stochastic gradient boosting. Computational

Statistics & Data Analysis, 38, 367–378.

Gaussian Naive Bayes:
Hand, D. J., & Yu, K. (2001). Idiot’s Bayes: Not so stupid after all?

International Statistical Review / Revue Internationale de
Statistique, 69, 385–398.

Bernoulli Naive Bayes:
Hand, D. J., & Yu, K. (2001). Idiot’s Bayes: Not so stupid after all?

International Statistical Review / Revue Internationale de
Statistique, 69, 385–398.

Support Vector Machine:
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine

Learning, 20, 273–297.

Ada Boost:
Schapire, R. E. (1999). A brief introduction to boosting, In Proceedings of

the 16th International Joint Conference on Artificial Intelligence,
Volume 2, Stockholm, Sweden, Morgan Kaufmann Publishers Inc.

Logistic Regression:
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models.

Monographs on Statistics and Applied Probability, 37.

TA ET AL.

89

Model Building Code

import models
'''
Select which models you want to use. Your options are:
1 "RandomForest"
2 : "AdaBoost"
3 : "GradientBoosting"
4 : "LogisticRegression"
5 : "DecisionTree"
6 : 'GaussianNB' (Gaussian naive Bayes)
7 : 'BernoulliNB' (Bernouille naive Bayes)
8 : 'SVM' (Support Vector Machine)
'''
ModelList= [1,2,3,4,6,7,8]

You could also directly call the models from classifiers/models.py:

import models
model = models.RandomForest()

MACHINE LEARNING TUTORIAL

90

Supplementary H

True positive = TP True negative = TN
False positive = FP False negative = FN

True Positive:

TP

TP + FN

True Negative:
TN

TN + FP

False Positive (Type I error):
FP

FP + TN

False Negative (Type II error):
FN

FN + TP

Accuracy:
TP + TN

TP + FP + FN + TN

Precision:
TP

TP + FP

Recall/Sensitivity:
TP

TP + FN

Specificity:
TN

TN + FP

TA ET AL.

91

F1 Score:

2 ∗ Precision ∗ Recall

Precision + Recall

MACHINE LEARNING TUTORIAL

92

Supplementary I
'''
Select which models you want to use. Your options are:
1 : "RandomForest"
2 : "AdaBoost"
3 : "GradientBoosting"
4 : "LogisticRegression"
5 : "DecisionTree"
6 : 'GaussianNB' (Gaussian naive Bayes)
7 : 'BernoulliNB' (Bernouille naive Bayes)
8 : 'SVM' (Support Vector Machine)
'''
ModelList= [1,2,3,4,6,7,8]
...
scores = []

for ModelNumber in ModelList:
 # Define the model
 print (“# # # Model: “+models.names[ModelNumber-1] + “…”)
 model = getattr(models, models.names[ModelNumber-1]) ()

 print(“Fitting Model”)
 model = model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

 score = accuracy _score(y_pred, y_test)
 scores.append(score)
 print(“Score:”, score)

 cm = confusion_matrix(y_test, y_pred)
 cm = cm.astype(‘float’) / cm.sum(axis=1) [:, np.newaxis]
#Normalize
 print(“Confusion Matrix: \n”, cm)

 plot_confusion_matrix(model, X_test, y_test,
 display_labels=[‘no delta’, ‘delta’],
 cmap=plt.cm.Blues,
 normalize=’true’)
 plt.title(models.names[ModelNumber-1])

print(“Saving the confusion matrix for {0} as
 confusion_matrix_for{0}.png”.format
(models.names[ModelNumber-1]))

TA ET AL.

93

 plt.savefig(“confusion_matrix_for_{0}.png”.format(models.names[
ModelNumber-1]))

To obtain the different accuracy scores, run lines 84–153 in
classifiers/main.py

The function that computes accuracy is sklearn.metrics.accuracy_score

MACHINE LEARNING TUTORIAL

94

Supplementary J

Feature importance for the Random Forest classifier using SMOTE were
calculated with the function getImportances() in classifiers/lib.py, which
is called in classifiers/main.py:

lib.getImportances(model, delta_data.columns[:-
1],savefig="feature_importance.png")

