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A barrier that prevents many social scientists from pursuing big data research is the lack of 
technical training required to assemble and organize big data. In an effort to address this 
barrier, we provide an introductory tutorial into machine learning for social scientists by 
demonstrating the basic steps and fundamental concepts involved in binary classification. 
We first describe the data and libraries required for analysis. We then demonstrate data 
cleaning methods, feature engineering, the model-building process, model assessment, 
and feature importance. Last, we discuss the ways in which social scientists can use 
machine learning to complement inference-based approaches and how it can contribute to 
a richer understanding of social science. 
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In the age of big data, researchers across many disciplines have begun to 
obtain massive amounts of data from a wide range of sources to assess 
behavioral patterns and make predictions. Big data refers to the “...large 
amount of data in the networked, digitized, and sensor-laden, information-
driven world” (Chang & Grady, 2019). Although big data has been defined 
in several ways, it is typically characterized by large volumes of data that are 
generated at a high speed and come in a wide variety of formats (Kitchin & 
McArdle, 2016). This is starkly different from the structured, “small” sample 
data that has been historically ubiquitous in the social sciences (Florescu et 
al., 2014; Kitchin, 2015). The amount of published journal articles using big 
data has been increasing and there has been growing interest in machine 
learning and other methods used to analyze big data (Monaro et al., 2018; 
Sartori et al., 2019). Although this growth has been extensive in many fields, 
it has been slower in many areas of social science due to a number of 
technological, human, and organizational barriers (Lazer & Radford, 2017).  

This is problematic for several reasons. A great deal of data is “now being 
produced, collected, and analyzed at unprecedented speed, breadth, depth, 
and scale” (Metzler et al., 2016) which may present social scientists with 
more opportunities to conduct large scale research on topics that were once 
considered exceptionally difficult and time-consuming to investigate. Much 
of big data are behavioral in nature and warrant the involvement of social 
scientists in data analysis. And, perhaps most importantly, big data has 
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raised “a number of complex new social and ethical issues” (Kwok, 2019) 
that cannot be adequately addressed without insights from the social 
sciences.  

One of the barriers that prevent many social scientists from being 
involved in big data research is the lack of technical training that is required 
for collecting, organizing, and analyzing big data, among others (Adjerid & 
Kelley, 2018). The lack of data science skills also precludes educators from 
teaching social science students the skills that are necessary to navigate big 
data. As such, researchers have not only called for greater interdisciplinary 
cooperation, but also greater accessibility and inclusion of data science 
skills into the social sciences.  

Although a number of resources have been created to address this issue, 
they are not always easily accessible, inclusive, or appropriately adapted for 
social scientists. For instance, tutorials tend to assume the reader has 
coding skills, or do not address the components that social scientists are 
generally more interested in such as the interpretability and validity of 
models. In addition, classes may require funding for enrollment and 
workshops are often constrained around specific dates. 

In an effort to address this barrier, we sought to provide a gentle, 
introductory tutorial for social scientists on machine learning—a method 
that is commonly used to analyze big data—in the current paper. 
Specifically, our tutorial focuses on the main concepts involved in machine 
learning and demonstrates a commonly-used machine learning technique: 
binary classification. This is a supervised learning approach which focuses 
on predicting the class or category (y) from inputs (x). Our goal in this 
tutorial is to predict whether a message was persuasive or not persuasive 
based on certain linguistic features of the message. As such, we will be 
building models that learn how the input variables (the linguistic features 
of each message) relate to the output (whether a message was persuasive or 
not), which is then used to build a predictive model that can accurately 
predict if a given message was persuasive or not persuasive. We also assess 
feature importance—the degree to which a particular input variable 
contributed to this predictive task.  

Although binary classification is only one out of many machine learning 
techniques, we chose to provide a tutorial on binary classification for several 
reasons. Classification is a widely-used technique in machine learning that 
has many applications that are relevant to the social sciences such as 
document classification, sentiment analysis, fraud detection, and many 
more. It is a relatively straightforward analysis and lays the foundation for 
more complicated machine learning techniques, making it a suitable topic 
to introduce social scientists into machine learning. Moreover, determining 
how a set of input variables relate to a categorical output variable is an 
analytic strategy commonly used in the social sciences (e.g., logistic 
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regression), making classification applicable and of interest to a broad range 
of social science researchers. 
 
The Current Tutorial 
 

The goal of this tutorial is to guide social scientists through the basic 
steps and fundamental concepts involved in machine learning. This tutorial 
is appropriate for social scientists who know very little about machine 
learning, as well as social scientists who are somewhat familiar with big data 
analytics and are looking to refine their understanding of machine learning 
fundamentals.  

We begin by describing the data used in this tutorial and the libraries 
that are required for analysis. We then demonstrate data cleaning methods, 
feature engineering, the model-building process, model assessment, and 
feature importance. We end by discussing the ways in which machine 
learning complement the inference-based approaches that are commonly 
used in the social sciences and how it can contribute to a richer 
understanding of social science. Because it is impractical to go in-depth into 
every aspect of machine learning in one tutorial, resources and citations 
have been placed throughout the tutorial for additional guidance and 
information. 

This tutorial is run and presented using Scikit-learn in Python version 
3.7. Although proficiency in Python is helpful, it is not required for 
understanding or successfully completing this tutorial. The data and scripts 
used in this tutorial are provided on our Github repository1 as well as in the 
Supplementary File. We will be referencing the corresponding files and code 
that are associated with each step of this tutorial throughout the paper. For 
helpful resources on Python and Scikit-learn, see Supplementary A. 
 
The Data 
 

Our data come from /r/ChangeMyView2, a community on Reddit in 
which users post their views on any topic (original posters, or OPs) and 
invite others to debate them. People who debate the OP reply to the OP’s 
original post (referred to as “repliers”) and state the reasoning behind their 
beliefs. The OP will award a delta (∆) to particular replies that changed their 
original views (see Supplementary B for examples). /r/ChangeMyView is a 
moderated community such that all users are required to adhere to its rules 
of conduct regarding post/reply quality, response timeliness, and civil 
discourse. 

 
1 https://github.com/amac-lfc/CMV/tree/v1.1 or https://github.com/amac-

lfc/CMV/archive/1.1.zip 

2 https://www.reddit.com/r/changemyview/ 
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The Python Reddit API Wrapper was used to pull the data (Boe, 2015). 
The initial dataset consisted of 4,820,112 replies from 104,081 original posts 
that were posted between 2013 and 2018. We also obtained each reply’s 
metadata including whether a reply was persuasive or not (i.e., awarded a 
delta or not), which original post (parent post) a given reply came from, the 
author username of a given reply, and others (see classifiers/main.py for 
the list of all metadata). The raw data, as well as the processed data, can be 
downloaded from our Github repository1 (see our note regarding the raw 
and processed datasets at the end of the Feature Engineering). 
 
Libraries 
 

A number of libraries must be installed into Python to execute all of the 
functions involved in this tutorial. These libraries include Numpy, Pandas, 
Scikit-learn, and Imbalanced-learn. They are included at the very 
beginning of each script for installation. See Supplementary C for more 
information about these libraries. 

 
Data Cleaning 
 

As one might expect, the data must be cleaned and assessed for quality 
before analysis. This typically involves determining if the data are accurate, 
corrupted, or missing. The corrupt or missing cases could be removed from 
the dataset entirely or be imputed or modified. Choosing which data 
cleaning technique(s) to use would depend on the research question at 
hand, the type of the data at hand, and individual data cleaning practices. 
See Kelleher, Mac Namee, & D’arcy, (2015) and McCallum (2012) for more 
information regarding data cleaning.  

After assessing our data, it was determined that our data required the 
following (Supplementary E): 
1. Removing empty replies: replies that show up as "[deleted]" or 

empty are typically the result of a user deleting their reply after 
posting it, a moderator deleting the reply after it was posted due to a 
violation of /r/ChangeMyView’s rules, or a user deactivating their 
account sometime after posting the reply. We remove these replies 
given that no content was provided. 

2. Transforming special characters into their textual equivalent: For 
example, "¾" might be transformed into "three out of four" and "÷" 
might be transformed into "divided by". These transformations allow 
algorithms to process symbols appropriately and with the correct 
meaning. 

3. Removing punctuation: This allows all of the text to be processed 
uniformly and ensures that different forms of the same word are not 
treated separately (e.g., Hi.; Hi?; Hi!). 
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Feature Engineering 
 

An important strategy for increasing the predictive accuracy of any 
machine learning model is through feature engineering. This involves 
creating new input features from the same existing raw data. Given that 
machine learning algorithms use these input features for learning, it is 
important to properly transform the data into a form that is compatible with 
a given machine learning algorithm. Many feature engineering techniques 
exist including binning (transforming a continuous or categorical variable 
into different groups/categories), one-hot encoding (transforming a 
categorical variable into multiple variables with binary values, such as 0 and 
1, to denote the presence or absence of that variable for a given observation 
of data), feature spitting (extracting particular facets of a variable and 
representing it as a separate variable), and others. For additional 
information regarding feature engineering techniques, see Zheng and 
Casari (2018). 

Deciding which feature engineering technique to apply on the data will 
depend on the kinds of information that should be highlighted for optimal 
learning and classification. In other words, features are engineered to allow 
algorithms to focus on and learn information that provides the most signal 
for learning. Having domain knowledge facilitates the identification and 
isolation of such information. 

Because our goal was to assess if a reply was persuasive or not persuasive 
based on its linguistic features, we conducted feature engineering by 
extracting certain information from each reply. Specifically, we extracted 
the frequency with which terms from certain linguistic categories appeared 
in each reply. The linguistic categories chosen were ones that contribute to 
a message’s persuasive appeal based on previous research. We also used 
previous research to construct dictionaries that contained terms that were 
relevant to each linguistic category.  

In all, 25 features were engineered. These input features, plus a feature 
indicating whether a given reply was awarded a delta or not, comprise the 
dataset that will be used to train a machine learning model to classify 
whether a given reply was persuasive or not. More information about these 
features can be found in Supplementary D. 

To obtain the cleaned dataset with all features engineered, the raw data 
needs to be downloaded and createData() needs to be run in 
classifiers/main.py (Supplementary E). It is important to note that this step 
can take more than a week to process and complete due to the sheer size of 
the data. Therefore, the processed data is also available to be downloaded 
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directly 3 . The sections below explain the remaining steps written in 
classifiers/main.py. 
 
Feature Scaling 
 

Once feature engineering is complete, the next step is to scale the 
features given that they vary in units, range, and magnitude. This is similar 
to the process of standardizing variables in inference-based approaches. 
There are different methods for scaling features in machine learning. For 
instance, z score standardization can be applied to transform the mean to 
equal 0 and the standard deviation equal to 1. Or, normalization can be 
applied to transform values into a fixed range, typically between 0 and 1. 
The scaling method used depends on the problem at hand and the machine 
learning algorithm used. See Zheng and Casari (2018) for further 
information. In this tutorial, we normalized our features to a range between 
0 and 1 (Supplementary F). 
 
Imbalanced Classes 
 

An issue with our data was the imbalanced number of replies that were 
not persuasive (non-delta-winning replies) and the number of replies that 
were persuasive (delta-winning replies). After the data were cleaned, there 
were 4,807,072 replies that were not persuasive and 13,040 replies that 
were persuasive. Having imbalanced classes can erroneously skew 
prediction accuracy, leading the model to predict the class that is simply 
more prevalent. In our case, our model could simply predict that any given 
reply is not persuasive and still obtain an overall prediction accuracy over 
90%. Thus, not addressing class imbalances could produce a biased model 
with a high rate of false negatives and prevent researchers from building 
meaningful predictive models. 

Common strategies for correcting class imbalances include class 
weights, random down-sampling the majority class, and random up-
sampling the minority class. Class weights is a method that assigns 
different weights to the majority and minority classes and penalizes 
misclassification by increasing weight for the minority class (i.e., persuasive 
replies) and reducing weight for the majority class (i.e., replies that were not 
persuasive; see King and Zeng, 2001). Random down-sampling the 
majority class involves randomly omitting observations from the majority 
class to prevent it from over-influencing the learning algorithm. Random 
up-sampling the minority class involves randomly replicating observations 
from the minority class to reinforce its effect. 

 
3 https://bit.ly/2AA6odD 
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The particular class imbalance strategy or strategies that is/are 
ultimately implemented should be appropriate for the data and research 
question at hand. Users may implement multiple strategies or compare 
model performance indices across different strategies to identify the 
strategy that produces the most optimal results. In the current tutorial, we 
implemented two class imbalance strategies (Supplementary F).  

In the first strategy, we applied random down-sampling of the majority 
class by randomly omitting replies that were not persuasive to obtain a more 
comparable sample of non-persuasive replies (n = 20,000). We then 
implemented a slightly modified version of the random up-sampling the 
minority class technique: we increased the number of persuasive replies 
from 12,138 to 20,000 by using Synthetic Minority Oversampling 
Technique (SMOTE; Chawla, Bowyer, Hall, & Kegelmeyer, 2002) which 
combines the features of multiple persuasive replies to create new replies. 
Thus, the new additions are not simply copies of existing persuasive replies. 
SMOTE usually outperforms random up-sampling and improves prediction 
accuracy. In the second strategy, we implemented class weights to balance 
our classes. We compared model performance indices between these two 
strategies and assess if one strategy outperformed the other in the Assessing 
Model Performance section.  
 
Preparing Data for Training and Testing 
 

The next step involves partitioning the data for training and testing. An 
algorithm will use the training data to fit the model — that is, it will use the 
training data to learn how the various linguistic features (i.e., input 
variables) relate to the output (i.e., whether a reply was awarded a delta or 
not) in order to build a predictive model that predicts if a given reply was 
persuasive or not persuasive. The test data will be used to validate the 
model’s performance on unseen data — a sample of the overall data that the 
model has not already assessed during the learning process. Thus, the test 
data is only used to evaluate model performance after a model is trained 
with the training data. It is important to use unseen data in testing as this 
will provide more reliable model performance estimates that are not 
inflated (James, Witten, Hastie, & Tibshirani, 2013). Several methods exist 
that can be used in this process and we will outline the methods that are 
commonly used below. 

Bootstrapping involves taking random samples (with replacement) of 
equal size repeatedly from the training data. A model is fitted on each 
sample and model performance is conducted on the data that were not 
included in the given sample. This process is repeated for each bootstrapped 
sample and model performance metrics are aggregated across each 
iteration. This method can address model overfit, reduce variance, and 
improve model accuracy. A greater number of samples is more ideal but is 
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more computationally expensive. See James et al. (2013) and Kuhn and 
Johnson (2013) for additional information. 

The validation set approach (also known as data splitting) involves 
splitting the data into a training set and a test (holdout) set. Using the split 
function in Scikit-learn, researchers might apply a 70/30 split to assemble 
the training and test datasets. That is, 70% of the data would be randomly 
selected and used for training while the remaining 30% would be used for 
testing. Other ratio splits, such as 60/40 and 80/20, can also be used. 
Because there are no straightforward rules regarding which ratio split is the 
best to use, researchers must consider how much data is available, the type 
of model that is being trained, and the trade-offs associated with each ratio 
split to make this decision. For instance, having more training data provides 
more opportunities for an algorithm to build an accurate predictive model 
whereas having more test data allows researchers to better assess how well 
the model generalizes to other unseen data. If researchers are looking to fit 
a very complex model that needs a great deal of data to learn from, an 80/20 
split might be more appropriate compared to a 70/30 or 60/40 split. Or, if 
researchers are prioritizing generalizability from their model, a 60/40 split 
might be more appropriate compared to a 70/30 or 80/20 split. Whatever 
ratio is used, it is important that the training and test datasets are both 
representative of the entire data and that the test dataset is large enough to 
produce statistically meaningful outcomes. See Raschka (2018) for 
additional information regarding ratio splits. 

The data may also be split into training, validation, and test datasets 
(e.g., 70/15/15; 80/10/10; 60/20/20). The validation dataset is used to 
evaluate model performance from the training dataset while adjusting its 
hyperparameters to optimize performance. In other words, after training on 
the training dataset is complete, the researcher may evaluate the model on 
the validation dataset and tweak the model to improve its performance. The 
tweaked model is then evaluated on the test dataset. See Kuhn and Johnson 
(2013) for additional information.  

The validation set approach is simpler and less expensive on resources 
compared to other methods. However, it can yield variable model 
performance metrics depending on which data points are included in the 
training and test sets. If the training set is small, this method is also prone 
to overestimation of model performance metrics.  

The k-fold cross-validation (CV) approach addresses the limitations of 
the validation set approach. It involves splitting the data into k equal-sized 
samples (or folds). One sample is used for testing the model and the 
remaining k - 1 samples are used for training the model. This process can be 
repeated k number of times with each sample serving as the test set. The 
resulting model performance metrics from each iteration are then 
aggregated. This method tends to yield more accurate, less inflated, and less 
variable test error estimates. Because of this, it is typically recommended 
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when dealing with small datasets (see James et al., 2013 for additional 
information). In addition, this method is computationally less expensive 
compared to leave-one-out cross-validation. A value of 5 or 10 are 
commonly used for k as these values tend to yield estimates that are not too 
high in bias or variance (see Kuhn & Johnson, 2013 for additional 
information). 

In the leave-one-out cross-validation approach, one data point is used 
for validation while the remaining n - 1 data points are used for training. A 
prediction is made for the single data point and this process is repeated n 
times. In other words, every data point is used for validation, and model 
performance metrics are aggregated. Training sets are almost identical in 
size compared to the entire dataset and results from each iteration are 
similar. This method is less biased compared to k-fold CV and is less prone 
to overestimating model performance metrics. However, it can be very time 
consuming with very large datasets given that n models must be fitted. 
LOOCV also produces test error estimates that have higher variance than k-
fold CV. See Sammut and Webb (2010) for additional information. 

Readers should consider the strengths and limitations of each method, 
along with logistical factors such as time availability and the size of the data, 
to determine which approach to use. Due to the size of our data, we conduct 
and demonstrate 5-fold cross-validation in this tutorial. Feature scaling, 
SMOTE, and class weights are executed in classifiers/main.py 
(Supplementary F). 
 
Model Building 
 

The next step involves building a model by selecting an algorithm to 
assess the training dataset for the learning/training process. The output of 
the training process is a model that has learned how the input and output 
variables relate to one another to predict if a reply was persuasive or not. 
This model is then tested on the test dataset in order to assess its 
performance. This process echoes the mechanisms involved in associative 
learning (or conditioning) in which learned behaviors are a result of 
reinforced stimuli and responses (Shanks, 1995). In fact, the concept of 
reinforcement learning—a common training approach in machine learning 
that is based on the maximization of reward (Sugiyama, 2015)—is rooted in 
B.F. Skinner’s theory of operant conditioning: a learning process in which a 
behavior is modified through the use of reinforcement or punishment 
(Staddon & Cerutti, 2003). 

Typically, several models are built using different algorithms, and model 
performance metrics are reported and compared with one another. The 
algorithms selected for testing should be appropriate for the data and task 
at hand. In other words, given that each algorithm has their respective 
assumptions, strengths, and weaknesses, the researcher should 
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systematically select algorithms to test. See Brownlee (2019) and 
Microsoft’s guide4 for more information regarding various algorithms and 
algorithm selection. 

We built 8 different models using the following algorithms that were 
most appropriate for classification: Decision Tree, Random Forest, 
Gradient Boosting, Gaussian Naive Bayes, Bernoulli Naive Bayes, Support 
Vector Machine (SVM), Ada Boost, and Logistic Regression. In the interest 
of space, we will not delve into each algorithm’s framework, strengths, and 
weaknesses in the current tutorial but encourage readers to refer to the 
citations provided for each algorithm in Supplementary G, along with 
Scikit-learn’s list of classification algorithms5 for additional information. 
Model building is executed in classifiers/main.py and all 8 models are 
defined in classifiers/models.py lines 84-95 (Supplementary G). 
 
Hyperparameter Optimization 
 

Before the training process begins, the hyperparameters of each model 
must be tuned to minimize error, help estimate model parameters, and 
optimize its learning process. Hyperparameters are configurations of a 
model that influence the quality and speed of a model’s learning process. 
These hyperparameters cannot be estimated ahead of time from data and 
thus require manual tuning. Examples of hyperparameters include the 
number of decision trees that will be constructed and the depth of each tree 
in a random forest model, and penalty in a logistic regression model. 

Each algorithm will have its own set of hyperparameters to tune and the 
list of hyperparameters for a given algorithm can be found on the Scikit-
learn website. However, the optimal value for a given hyperparameter or 
set of hyperparameters in one problem or dataset may not be the same in a 
different problem or dataset. Users may be tempted to use the practical 
hyperparameter values that are provided by default for all models in Scikit-
learn, but practical does not always translate to optimal (Buitinck et al., 
2013). How, then, does one identify the best value or set of values for a given 
hyperparameter or set of hyperparameters, respectively? 

A common method is performing a grid search. In short, a grid search 
conducts an exhaustive search on every combination of a model’s 
hyperparameter values to identify the most optimal set of hyperparameters. 
We conducted a grid search on all 8 models (Table 1) and then used these 
hyperparameters for each of our models in training and testing. The code 
for the grid search can be found in classifiers/grid_search.py.  
 

 
4 https://docs.microsoft.com/en-us/azure/machine-learning/how-to-select-

algorithms 

5 https://scikit-learn.org/stable/supervised_learning.html#supervised-learning 
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Table 1 
Results of grid search 

Logistic SVM 

C 0.001 degree 1 

Penalty l2 Gamma 0.1 

solver liblinear kernel ’rbf’ 

  shrinking True 

ADA Boost Gradient Boosting 

algorithm ’SAMME.R’ learning_rate 0.1 

learning_rate 0.5 loss ’deviance’ 

n_estimator 1600 max_features ’sqrt’ 

k_neighbors 4 max_leaf_nodes None 

sampling_strategy 1.0 max_samples_leaf 1 

  max_samples_split 10 

  n_estimator 200 

Decision Tree Random Forest 

criterion ’gini’ criterion ’gini’ 

max_depth 10 max_depth None 

max_features None max_features ’sqrt’ 

max_leaf_nodes 50 max_leaf_nodes None 

min_impurity_ 
decrease 

0.0 
in_impurity_ 

decrease 
0.0 

max_samples_leaf 1 max_samples_leaf 4 

max_samples_split 5 ax_samples_split 2 

splitter ’best’ boostrap True 

Gaussian Naive Bayes Bernouilli Naive Bayes 

var_smoothing 0.1 alpha 0.001 

priors [0.02, 0.98] class_priors 
[0.88, 
0.12] 

  fit_prior True 
 

Assessing Model Performance 
 

Each model’s performance can be evaluated using various model 
performance metrics which will aid in the selection of the best model. We 
describe the most commonly used metrics below. Selecting or prioritizing 
particular metrics for evaluation will depend on factors such as the type of 
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model being used, the strengths and limitations of a particular metric, and 
the overarching goal of the project (see Murphy, 2012 for more information 
regarding model selection). 
 
Confusion Matrix 
 

Figure 1 illustrates our confusion matrix. The y-axis marks the actual 
results — whether a reply was awarded a delta (1; the positive label) or not 
(0; the negative label) — and the x-axis marks the predicted results — the 
model’s predictions of whether a given reply was awarded a delta (1; the 
positive label) or not (0; the negative label). Thus, the matrix reports a given 
model’s true positive rate, which is the proportion of cases in which actual 
positives were predicted as positives; true negative rate, which is the 
proportion of cases in which actual negatives were predicted as negatives; 
false positive rates (Type I error), which is the proportion of cases in which 
actual negatives were predicted as positive; and false negative rates (Type 
II error), which is the proportion of cases in which actual positives were 
predicted as negative. Formulas for each of these rates are reported in 
Supplementary H. 
 
Figure 1. Confusion matrix components. 1 = delta awarded; 0 = no delta 
awarded. 
 

 
 

With regard to our models, true positives represent the rate in which the 
model predicted that a reply was awarded a delta when it actually had been 
awarded a delta; true negatives represent the rate in which the model 
predicted that a reply was not awarded a delta when it actually had not been 
awarded a delta; false positives represent the rate in which the model 
predicted that a reply was awarded a delta when it actually had not been 
awarded a delta; and false negatives represent the rate in which the model 
predicted that a reply was not awarded a delta when it actually had been 
awarded a delta. Figure 2 illustrates the confusion matrices for all 8 models 
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using SMOTE whereas Figure 3 illustrates the confusion matrices for all 8 
models using class weights (Supplementary I).: 
 
Figure 2. Confusion matrices for all 8 models using SMOTE. 
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Figure 3. Confusion matrices for all 8 models using weighted classes. 
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Additional Model Performance Metrics 
 

Other model performance metrics can also be obtained from a confusion 
matrix to further assess a model’s performance. We describe metrics that 
are commonly used below and formulas can be found in Supplementary H. 

Accuracy is the accuracy rate of an overall model which is the proportion 
of correct predictions made. It is often used in classification and is an 
effective performance metric when classes are equal in size. Precision is the 
proportion of positive predictions that are actually positive and is an 
effective metric when there are class imbalances as it calculates the accuracy 
of the minority class. 

Recall/Sensitivity is the proportion of actual positives that were 
correctly identified as such. Unlike precision, recall/sensitivity illustrates 
the rate of positive predictions that are missed. It is also an effective metric 
when there are class imbalances. When used with precision, true negatives 
are never taken into account. Thus, this should only be used when the 
detection of the negative class is not important. 

Specificity is the proportion of actual negatives that were correctly 
identified as such. Thus, it measures how well your model identifies 
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negative cases. When used with recall/sensitivity, all entries in the 
confusion matrix are taken into account which is an advantage when the 
rate of true positives, true negatives, false positives, and false negatives 
should all be assessed. 

F1 Score is the harmonic mean of precision and recall/sensitivity. The 
harmonic mean is often used as a measure of central tendency for ratios or 
rates as it equalizes the weights of each observation. As such, F1 Scores are 
an effective performance metric when there is a high rate of true negatives, 
when false negatives and false positives equally impact a model, and the 
addition of more data does not impact model outcomes. 

In an Area Under the Receiver Operator Characteristic Curve (AUC-
ROC Curve), the ROC curve graphs the true positive rate and false positive 
rate at different classification thresholds. The AUC measures the entire area 
under the ROC curve and reports the probability that a given model ranks a 
random positive observation more highly than a random negative 
observation. In short, the AUC is an aggregate measure of a model’s 
performance across all classification thresholds and tells us how well a given 
model discriminates between two classes. AUC scores range from 0 to 1 with 
scores closer to 1 indicating more accurate predictions. An advantage of the 
AUC is that it focuses on how well the predictions are ranked instead of the 
actual prediction itself. However, it treats false positives and false negatives 
equally and thus does not take into account the costs between these two 
types of error. 

Precision-Recall (PR) Curve plots a model’s precision and recall on the 
y- and x- axis, respectively, for different thresholds. Because it does not use 
the number of true negatives, it is advantageous for class-imbalanced 
datasets. 

These various model performance metrics can be examined and 
compared with each other to aid in the selection of the best model. But how, 
exactly, does one choose the best model(s)? There is no straightforward 
answer. The best model(s) will depend on the nature of the data, the various 
problems and goals at hand, and the time and resources available. In this 
tutorial, since we are prioritizing classification accuracy, we will primarily 
focus on choosing the model with the best accuracy. Other model 
performance metrics, however, can be prioritized or taken into 
consideration depending on the overarching goal of the project. See Murphy 
(2012) and Seliya et al. (2009) for more information regarding model 
selection and classifier performance metrics.  

We used 5-fold CV to calculate accuracy scores using class weights 
(Figure 4) and SMOTE (Figure 5; Supplementary I). Next, we compare 
model performance across the two class imbalance strategies and examine 
if a particular class imbalance strategy outperformed the other. 
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Figure 4. Accuracy scores of each model using 5-fold cross 
validation using class weights. 
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Figure 5. Accuracy scores of each model using 5-fold cross validation using 
SMOTE. 
 

 
 

The accuracy scores across the two class imbalance strategies ranged 
from .65 to .71. The Logistic Regression and Random Forest models 
produced the highest aggregate accuracy score when using class weights 
(69%) whereas the Gradient Boosting model produced the highest 
aggregate accuracy score when using SMOTE (70.2%). At this point, it may 
be tempting to automatically select the Gradient Boosting model to report 
or use for subsequent classification tasks. However, testing many models 
and selecting only the model with the best accuracy score to use and report 
without taking into account the accuracy of the other models is referred to 
as model-hacking. This is similar to the concept of p-hacking in inference-
based approaches and can lead to biased and flawed conclusions.  

Two methods are typically recommended to avoid model-hacking: The 
first involves comparing all model outcomes with one another. Observing 
similar performance outcomes across all models would suggest that such 
results are reliable and robust, especially if similar metrics were obtained 
using different algorithms. The second involves combining several different 
classifiers into an ensemble model which typically performs better than 
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single models. For more information regarding ensemble methods, see 
Brown, 2010.  

Looking across both class imbalance strategies, the lowest and highest 
accuracy scores only differed by 6 percentage points, indicating that all of 
our models produced similar accuracy scores. As such, if we were to select 
one model to use for subsequent classification tasks, we should be fairly 
confident choosing the Gradient Boosting model using SMOTE as it 
produced the highest accuracy score.  

What if accuracy scores greater than 70.2% are desired? Several 
procedures may help increase accuracy by optimizing learning and 
classification. Examples include the use of different feature engineering 
strategies, adding or removing input variables, and implementing ensemble 
methods. See Patterson and Gibson (2017) for various procedures that can 
help increase accuracy scores. The code to train and test each model, 
compute confusion matrices, and compute accuracy scores is in 
Supplementary I.  
 
Feature Importance 
 

Social scientists may naturally be interested in identifying the input 
variables that were most important in the prediction process for a given 
model. In machine learning, this can be done by investigating feature 
importance. In addition to providing useful information about a model, 
examining feature importance can help simplify the model, enhance model 
interpretability, improve model performance, mitigate overfitting, and 
decrease the computational cost of the training process. For the sake of 
brevity, we generate feature importance only for the Random Forest model 
using SMOTE (Supplementary J). However, it is beneficial to compare 
feature importance among all models. Again, observing similar patterns 
among input variables across all models would indicate greater reliability 
and confidence in a given input variable’s importance and role in 
classification.  

Results are illustrated in Figure 6 with higher numbers indicating 
greater importance. The top 5 most important features in this model appear 
to consist of terms related to dominance, arousal, and valence. If the same 
pattern appears in the other models, this may suggest that certain levels of 
emotionality may substantially impact what makes a message persuasive. 
On the other hand, examples and formatting features such as the number of 
bullet points, bolded words, and exclamation points, do not appear to 
substantially impact what makes a message persuasive. 
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Figure 6. Feature ranking of the Random Forest model using SMOTE. 
 

 
 
We measured feature importance via Entropy importance (Breiman, 

2001). Other techniques can also be used to generate feature importance 
such as Local Interpretable Model-Agnostic Explanations (LIME; Ribeiro, 
Singh, & Guestrin, 2016), InterpretML (Nori, Jenkins, Koch, & Caruana, 
2019), and Shapley Additive Explanations (SHAP; Lundberg & Lee, 2017). 
For more information regarding feature importance and model 
interpretablility, see Kaur et al. (2020). 
 

Discussion 
 

In the current paper, we provided an introductory tutorial into machine 
learning for social scientists by demonstrating the basic steps and 
fundamental concepts involved in binary classification. We built several 
predictive models that predicted whether a textual reply was persuasive or 
not persuasive. Our accuracy scores ranged from 65% to 70.2% and we 
identified features that played a larger role in this prediction task.  

Social scientists tend to adhere to a more theory-driven approach to 
analyzing data and, as such, primarily use statistical models to make 
inferences regarding the relationships between variables. In contrast, big 
data research typically utilizes techniques that emphasize predictive 
accuracy such as machine learning. Put another way, inference-focused 
approaches seek to explain while prediction-focused approaches seek to 
predict (Bzdok, Altman, & Krzywinski, 2018). Incorporating prediction-
focused approaches into social science research can complement inference-
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focused approaches, and, together, these two approaches can provide for a 
stronger and well-rounded understanding of social science.  

For example, given that model performance tends to be better in training 
than in testing, this provides a level of protection against reporting more 
inflated and overly-optimistic estimations (Yarkoni & Westfall, 2017). P-
hacking can be minimized through the collective examination of 
performance among all models that were tested, as well as the use of 
ensemble methods. In addition, the general emphasis on predictive 
accuracy enables the "general-purpose learning algorithms to find patterns 
in often rich and unwieldy data (Bzdok et al., 2018)." And, evaluating both 
inference and prediction can provide insightful conclusions that cannot be 
garnered using inference or prediction alone. In our case, researchers can 
determine which linguistic features make a message persuasive and also 
apply this to predict whether a message will be persuasive or not. 

In prediction-focused approaches, the standard model building 
procedure involves building the model first and then testing its performance 
on unseen data using test datasets, cross-validation, etc. Thus, the process 
of examining how well the model generalizes and replicates onto new data 
are at least partially addressed and "built-in". Generalizability and 
replication in inference-based approaches, on the other hand, are addressed 
when researchers test the same statistical model on newly collected data. 
This process can take years to accomplish — but only if it is even being done 
in the first place. Thus, prediction-focused approaches can contribute to 
“maximize accuracy and minimize replicability issues” (Orrù, Monaro, 
Conversano, Gemignani, & Sartori,, 2020).  

In addition to fostering greater involvement of social scientists in the 
world of big data, knowledge of machine learning techniques can better 
enable social scientists to facilitate the translation of empirical findings into 
real-world applications and interventions. For example, we created an app6 
based on the analyses that were conducted in the current tutorial. In this 
app, users are prompted to input any message into the textbox. The machine 
learning model that we trained in this tutorial then analyzes the user’s 
message and reports the probability of that message being persuasive. It 
also illustrates how the given message compares with the average 
persuasive message. Along with practical uses, this can help cultivate 
engagement and enhance the accessibility of social science research with the 
general public. Taken together, this can have important implications in 
shaping laypeople’s perceptions and support for science (Rose, Markowitz, 
& Brossard, 2020) as well as bolster the role of social science in big data. 
 

 
6 http://cmvcheck.amac.xyz/ 
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Supplementary A 

 
Python is a preferred programming language for machine learning as it 
possesses a great deal of pre-existing libraries that are available for 
researchers to quickly and efficiently build and run machine learning 
models. It is also well-equipped to handle large amounts of data, is open-
source, and considered relatively simple and easy to learn compared to 
other programming languages. In addition, Scikit-learn is considered the 
most comprehensive machine learning package in Python and widely used 
by data scientists (see Hao & Ho, 2019, for a review of the Scikit-learn 
package). For helpful Python-related resources including installation, see 
Rhoads, 2019. 
 
Hao, J., & Ho, T. K. (2019). Machine learning made easy: A review of scikit-

learn package in  python programming language. Journal of 
Educational and Behavioral Statistics, 44,  348–361. 

Rhoads, S. (2019). A brief introduction to python for psychological science 
research. American  Psychological Association. URL: 
https://www.apa.org/science/about/psa/2019/07/python-
 research 
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Supplementary B 
 
 

An example of an original post on /r/ChangeMyView. 
 

 
 

An example of a delta being awarded to a reply. 
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Supplementary C 
 
Numpy (Oliphant, 2006; Walt et al., 2011) is used for working with arrays 
and matrices, as well as performing mathematical operations on them. This 
is used in the feature engineering stage to create input features. 
 
Pandas (McKinney, 2010) is a software library used mainly for data 
manipulation and analysis. It is used to import the data (which are 
contained in CSV files) into Python, as well as to view, inspect, select, filter, 
sort, join, combine, and clean data. 
 
Scikit-learn (Pedregosa et al., 2011) is used to build the machine learning 
models. It takes the array features from NumPy and turns them into 
prediction functions that returns a probability of whether a reply would 
receive a delta or no delta. 
 
Imbalanced-learn (Lemaître et al., 2017) offers re-sampling techniques that 
are used to correct for class imbalances in the data. 
 
Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A 
python toolbox to tackle the curse of imbalanced datasets in machine 
learning. Journal of Machine Learning Research, 18, 1–5.  
 
McKinney, W. (2010). Data structures for statistical computing in Python, 
In Proceedings of the 9th Python in Science Conference, SciPy. 
 
Oliphant, T. E. (2006). A guide to Numpy (Vol. 1). Trelgol Publishing USA. 
 
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, 
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Et al. (2011). 
Scikit-learn: Machine learning in Python. The Journal of Machine Learning 
Research, 12, 2825–2830. 
 
Walt, S.V.D., Colbert, S. C., & Varoquaux, G. (2011). The Numpy array: A 
structure for efficient numerical computation. Computing in Science & 
Engineering, 13, 22–30.  
  



TA ET AL. 

83 

 

Supplementary D 
 

• High arousal: Terms that are “exciting” or elicit high 
arousal (e.g., abduct, devil, lunatic, stalker) 

• Medium arousal: Terms that are moderately arousing 
(e.g., forget, moldy, scorch, unlucky) 

• Low arousal: Terms that are “calm” or elicit low arousal 
(e.g., opt, retain, stall, west) 

• High valence: Terms that are positive (e.g., achieve, 
consent, friend, marry) 

• Medium valence: Terms that are neutral (e.g.,catwalk, 
dusk, retina, wavy) 

• Low valence: Terms that are negative (e.g., syringe, taunt, 
prison, kill) 

• High dominance: Terms that represent high degrees of 
control (e.g., care, independent, mindful, rise) 

• Medium dominance: Terms that represent moderate 
degrees of control (e.g., flea, childless, analyst, cane) 

• Low dominance: Terms that represent low degrees of 
control (e.g., mournful, adrift, abandon, dementia) 

• Certainty: Terms denoting certainty/assertiveness (e.g., 
truly, unquestionably, precisely, undeniably) 

• Extremity: Terms denoting how strongly an attitude or 
judgment is (e.g., extremely, very, seriously, strongly) 

• Examples: Providing an example (for example, for 
instance, i.e., e.g.) 

• Hedges: Terms/phrases used to soften a message (e.g., 
slight chance, suggests, some possibility, usually not, 
seems to me) 

• Self-references: Terms referring to oneself (e.g., I, me, we, 
us, mine, myself, our) 

• Lexical diversity: Type token ratio (number of unique 
words divided by total number of words) 

• Character count: Total number of characters 

• Reply frequency: Number of replies spawned from a given 
reply 

• Nested count: Number of comments that preceded a given 
reply 

• Link count: Number of links provided • Quotes: Number 
of quotes included 

• Questions: Number of question marks 

• Bold: Number of boldface terms 
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• Average words per sentence: Average number of words 
per sentence 

• Enumeration: Number of bullet points 

• Exclamation: Number of exclamation points 
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Supplementary E 
 

def createData(): 
inputs = ["/home/shared/CMV/RawData/Comments_MetaData.csv", 

"/home/shared/CMV/RawData/Comments_TextData.csv", 
"/home/shared/CMV/RawData/Submissions_MetaData.csv", 
"/home/shared/CMV/RawData/Submissions_TextData.csv"] 
 

outputs = 
['/home/shared/CMV/SlimmedData/Slimmed_Comments_Met

aData.csv', 
'/home/shared/CMV/SlimmedData/Slimmed_Comments_

TextData.csv', 
'/home/shared/CMV/SlimmedData/Slimmed_Submissions_Meta

Data.csv', 
'/home/shared/CMV/SlimmedData/Slimmed_Submissions_TextD

ata.csv'] 
 
columns_lst = [["name", "parent_id", "author", "link_id"], 

["author", "id", "parent_id", "body"], 
["url", "id", "author"], 
["author", "id", "title", "selftext"]] 
 

slimmer.slim_all(inputs, outputs, columns_lst)  
 
input = 
'/home/shared/CMV/SlimmedData/Slimmed_Comme
nts_TextData.csv' 
 
deltas_file = 
'/home/shared/CMV/SortedData/delta_winning_ids.txt' 
deltas_data_file = 
'/home/shared/CMV/SortedData/delta_comments_data.csv' 
nodeltas_data_file = 
 '/home/shared/CMV/SortedData/nodelta_comments_data.csv'  
 
labeler.get_deltas(input, deltas_file) 
 
labeler.create_labels(input, deltas_data_file, nodeltas_data_file,  
deltas_file) 
 
# get input files 
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delta_input = 
"/home/shared/CMV/SortedData/delta_comments_data.csv"  
nodelta_input = 
"/home/shared/CMV/SortedData/nodelta_comments_data.csv" 
word_list_input =  "../data/word_list.csv" 
 
# make output files 
 
output_delta = 
"/home/shared/CMV/FeatureData/all_delta_feature_data.csv" 
output_nodelta = 
"/home/shared/CMV/FeatureData/all_nodelta_feature_data.csv" 
 
# generate features 
 
delta_features, nodelta_features = 
features.generateFeature([delta_input, nodelta_input],  [output_elta, 
output_nodelta, word_list_input, ‘con’) 
 
print("Writing Features to File with Pandas")  
delta_features = pd.DataFrame(data=delta_features, 
columns=None) nodelta_features = 
pd.DataFrame(data=nodelta_features, columns=None) 
 
delta_features.to_csv(output_delta, index=False) 
nodelta_features.to_csv(output_nodelta, index=False) 
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Supplementary F 
nodelta_file = 
"/home/shared/CMV/FeatureData/all_nodelta_feature_data.csv" 
delta_file = 
"/home/shared/CMV/FeatureData/all_delta_feature_data.csv" 
 
nodelta_data = 
pd.read_csv(nodelta_file) 
delta_data = 
pd.read_csv(delta_file) 
 
# Merge the data set and add labels = 0 (No Delta) 1 
(Delta) 
 
data = engineer.merge([nodelta_data, delta_data]) 
 
# Split the data between features and labels 
 
X, y = data[: , :-1], data[:, -1] 
 
# Normalize all the features 
between 0 and 1 
 
scaler = MinMaxScaler() 
X=scaler.fit_transform(X) 
 
print("Shape of all features:", X.shape) 
X_train, X_test, y_train, y_test = engineer.train_test_split (X, y, 
test_size=0.33) 
 
# Oversampling with SMOTE 
 
X_train,y_train = engineer.smote(X_train, y_train, k_neighbors= 2, 
sampling_strategy=0.8) 
 
# To use class weights to balance the classes instead of SMOTE: 
 
class_weight=compute_class_weight(class_weight='balanced',classes=n
p.unique(y),y=y) class_weight={0:class_weight[0],1:class_weight[1]} 
print(class_weight) 
 
sample_weight = np.zeros(len(y_train)) 
sample_weight[y_train==0]=class_weight[0] 
sample_weight[y_train==1]=class_weight[1]  
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Supplementary G 
 

Decision Tree: 
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 

81–106. 
 
Random Forest: 
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. 
 
Gradient Boosting: 
Friedman, J. H. (2002). Stochastic gradient boosting. Computational 

Statistics & Data Analysis, 38, 367–378. 
 
Gaussian Naive Bayes: 
Hand, D. J., & Yu, K. (2001). Idiot’s Bayes: Not so stupid after all? 

International Statistical Review / Revue Internationale de 
Statistique, 69, 385–398.  

 
Bernoulli Naive Bayes: 
Hand, D. J., & Yu, K. (2001). Idiot’s Bayes: Not so stupid after all? 

International Statistical Review / Revue Internationale de 
Statistique, 69, 385–398.  

 
Support Vector Machine: 
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine 

Learning, 20, 273–297. 
 
Ada Boost: 
Schapire, R. E. (1999). A brief introduction to boosting, In Proceedings of 

the 16th International Joint Conference on Artificial Intelligence, 
Volume 2, Stockholm, Sweden, Morgan Kaufmann Publishers Inc. 

 
Logistic Regression: 
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. 

Monographs on Statistics and Applied Probability, 37.  
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Model Building Code 
 
import models 
''' 
Select which models you want to use. Your options are: 
1 "RandomForest" 
2 : "AdaBoost" 
3 : "GradientBoosting" 
4 : "LogisticRegression" 
5 : "DecisionTree" 
6 : 'GaussianNB' (Gaussian naive Bayes) 
7 : 'BernoulliNB' (Bernouille naive Bayes) 
8 : 'SVM' (Support Vector Machine) 
''' 
ModelList= [1,2,3,4,6,7,8] 

 
# You could also directly call the models from classifiers/models.py: 

 
import models  
model = models.RandomForest() 
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Supplementary H 
 

True positive = TP  True negative = TN 
False positive = FP  False negative = FN 

 
True Positive:  

TP

TP + FN
 

 
 

True Negative: 
TN

TN + FP
 

 
 

False Positive (Type I error): 
FP

FP + TN
 

 
 

False Negative (Type II error): 
FN

FN + TP
 

 
 

Accuracy: 
TP + TN

TP + FP + FN + TN
 

 
 

Precision: 
TP

TP + FP
 

 
 

Recall/Sensitivity: 
TP

TP + FN
 

 
 

Specificity: 
TN

TN + FP
 

 



TA ET AL. 

91 

 

 
F1 Score: 

2 ∗ Precision ∗ Recall

Precision + Recall
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Supplementary I 
''' 
Select which models you want to use. Your options are: 
1 : "RandomForest" 
2 : "AdaBoost" 
3 : "GradientBoosting" 
4 : "LogisticRegression" 
5 : "DecisionTree" 
6 : 'GaussianNB' (Gaussian naive Bayes) 
7 : 'BernoulliNB' (Bernouille naive Bayes) 
8 : 'SVM' (Support Vector Machine) 
''' 
ModelList= [1,2,3,4,6,7,8] 
... 
scores = []  
 
for ModelNumber in ModelList: 
 # Define the model 
 print (“# # # Model: “+models.names[ModelNumber-1] + “…”) 
 model = getattr(models, models.names[ModelNumber-1]) () 
 
 print(“Fitting Model”) 
 model = model.fit(X_train, y_train) 
 y_pred = model.predict(X_test) 
 
 score = accuracy _score(y_pred, y_test) 
 scores.append(score) 
 print(“Score:”, score) 
 
 cm = confusion_matrix(y_test, y_pred) 
 cm = cm.astype(‘float’) / cm.sum(axis=1) [:, np.newaxis] 
#Normalize 
 print(“Confusion Matrix: \n”, cm) 
 
 plot_confusion_matrix(model, X_test, y_test, 
  display_labels=[‘no delta’, ‘delta’], 
  cmap=plt.cm.Blues, 
  normalize=’true’) 
  plt.title(models.names[ModelNumber-1]) 
 
print(“Saving the confusion matrix for {0} as 
 confusion_matrix_for{0}.png”.format 
(models.names[ModelNumber-1])) 
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 plt.savefig(“confusion_matrix_for_{0}.png”.format(models.names[
ModelNumber-1])) 
 
# To obtain the different accuracy scores, run lines 84–153 in 
classifiers/main.py 
 
# The function that computes accuracy is sklearn.metrics.accuracy_score 
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Supplementary J 
 
Feature importance for the Random Forest classifier using SMOTE were 
calculated with the function getImportances() in classifiers/lib.py, which 
is called in classifiers/main.py: 
 

lib.getImportances(model, delta_data.columns[:-
1],savefig="feature_importance.png")  
 
 
 


