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ABSTRACT
While anticipating the outcomes of natural disasters is a growing 
area of interest to a diverse body of organizations, little formal work 
has been done to make these predictions for specific countries . We 
propose a novel methodology that combines supervised learning on 
historical disaster and demographic data with intelligent clustering 
to expand a relevant training set for particular countries and disaster 
types . By clustering countries at snapshots in time, based on develop-
mental stages and ‘disaster event profiles,’ we develop more specific 
sets of historical data that improve predictions on the number of 
people killed and financial cost of various disaster types .

INTRODUCTION
Recent natural disasters have driven much research effort towards 
developing predictive models of when and where disasters will strike . 
An equally important aspect of disaster anticipation, however, is un-
derstanding the predicted impact of such disasters for particular coun-
tries . Organizations from the UN to Google have devoted considerable 
resources towards understanding the countries most at risk of high 
disaster impact .1 Developing this ‘risk-profile’ for different countries 
allows international organizations to effectively tailor their aid efforts .

Few attempts, however, have been made to systematically predict 
the societal and economic impacts of specific natural disasters within 
particular countries . Part of the challenge with developing this type 
of model is the scarcity of historical data, for a given country, of 
particular disasters . Moreover, ‘impact’ of a natural disaster varies 
substantially with the development stage of a country, such that his-
torical disaster data may no longer be particularly useful as a training 
instance for a country that has developed significantly over time . To 
resolve this, we propose a novel methodology that predicts the impact 
of natural disasters, for a given country, based on that country’s own 
history of disasters of the same type and ‘similar’ countries that have 
experienced the same disaster . Our end goal is to answer the question: 
given a particular country and disaster that is expected to occur, can 
we reliably predict that disaster’s impact on the country, measured by 
both economic and societal impact .

DATA DESCRIPTION & PRE-PROCESSING
For historical disaster data, we use the EM-DAT dataset (EM), which 
collects information on disasters from 1900-2008 across all countries . 
An event is classified as a disaster if one or more of the following crite-
ria is met: 10 or more people reported killed, 100 or more reported 
affected, declaration of a stage of emergency, or call for international 
assistance . Features included in the dataset consist of the number of 
people killed (killed), financial cost (cost), country, date of the event, 
and a few others . We expand this set to also include a region and sub-
continent code for the country of each disaster’s occurrence .

Demographic information for countries, which can be used to catego-
rize similarly developed nations, was obtained from the World Bank 
(WB) .2 This data is organized into 18 categories, ranging from Climate 
Change to Infrastructure, with over 1300 distinct features across all 
topics .

Both datasets were restructured such that a row, instead of repre-
senting a single country with values for its attributes over time, is 
represented as a country/year pair . This facilitates comparisons of 
countries that, although at different periods of time, may be at similar 
developmental stages . Integrating both datasets with this structure 
yields a 12,948 x 1300 sparse design matrix . 

Our analysis focuses on predicting the EM features ‘killed’ and ‘cost’ as 
measures of societal and economic impact .

BASELINE MODEL
To develop a baseline prediction for each disaster type, initial super-
vised learning models consisted of either the entire EM or the com-
bined EM and WB datasets . Linear combinations of features in these 
datasets were tested, such that

       (1)

Higher order polynomials, while also examined, had much poorer 
cross-validated mean squared test errors, likely due to overfitting . 
Baseline results are depicted in Table 1, for predictions on killed only .

Table 1

KILLED EM EM+WB

Epidemic 

Train R2 0 .2501934 0 .2235237

Test MSE 13140730 12957340

Storm 

Train R2 0 .0926529 0 .2248343

Test MSE 103318000 144051300

Flood

Train R2 0 .1272947 0 .1857909

Test MSE 588021 .8 697602 .9

Quake

Train R2 0 .06555992 0 .1626838

Test MSE 193371800 204932400

First, we notice the poor predictive power of using either the EM 
disaster features or combined EM and WB features in a linear model to 
estimate killed (and cost) . The following are insights from our baseline 
analysis

• The EM dataset is sparse for a particular country/year entry 
and a given disaster type .
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• Training, based on EM features, across the entire set of coun-
try-year pairs, as expected, leads to estimates of θ that are less 
likely to reflect a particular country’s risk level . 

• Naively combining WB features with EM features worsens the 
model’s performance . While we might expect demographic 
data to be correlated with disaster outcomes, training over the 
entire range of data appears to hide the added value of coun-
try-specific information .

One issue immediately addressed was the underlying assumption of 
normality in our linear models . The plot below shows the residuals 
error in predicting the number of people killed for the flood disaster 
type . Using a log transformation of the response variable (both killed 
and financial cost) addressed non-normality of the errors and greatly 
enhanced both R2 and testing errors in the linear models, across all 
disaster types .

 Pre-log transformation Post-log transformation

CLUSTERING
By clustering countries at similar risk and developmental stages, we 
aim to expand the set of historical disaster data available to make pre-
dictions on a specific disaster event for a particular country . Prior work 
has looked to classify countries by a development index .4 However, 
our analysis differs from this by 1) using country-specific demographic 
information to inform the cluster groups and 2) allowing countries at 
different time points to be grouped into the same cluster . The added 
flexibility of 2) may allow for less intuitive combinations of particular 
countries .

We first looked to cluster country/year pairs, for a given disaster type, 
based on WB features . We chose k-means as our clustering algorithm, 
as we view countries as belonging to distinct groups rather than 
probabilistically weighted across multiple groupings . Within sum of 
squares across cluster groups suggested the WB features partition 
country/year pairs into roughly 4 groups, a result that was consistent 
across all disaster types . The plot below, for flood WB features, depicts 
clusters along the first two principal components of the data . These 
components capture approximately 40% of the variability in the WB 
features for floods . The 4 distinct groupings confirms the within sum 
of squares analysis, so we chose to use 4 WB clusters for each disaster 
type . These groups, more qualitatively, correspond to pools of similarly 
‘developed’ countries at particular snapshots in time .

FURTHER PROCESSING: MISSING VALUES & IMPUTATION
To address the sparsity of our design matrix, we evaluated numerous 
imputation techniques . Prior to implementing this, however, it was 
necessary to develop a heuristic to remove rows and/or columns with 
excessive missing values . This helps reduce the number of necessary 
imputations, which can drastically skew predictions . To determine the 
acceptable thresholds for missing values in rows and/or columns, we 
iterated over a broad range of thresholds for each disaster type . The 
thresholds i and j, where i corresponds to a row threshold and j cor-
responds to a column threshold of our design matrix X, were chosen 
such that 

       (2)

where y is a vector of responses, either killed or cost . The overall result 
was a series of matrices with an optimized amount of missing data 
across rows and columns, specific to each disaster type . For most ma-
trices, a row threshold of 0 .6 (i .e . up to 60% of data entries missing), 
and column threshold of 0 .7 was found optimal . We then evaluated 
both SVD and Kth nearest neighbor (KNN) imputation methods3 on 
these outputs . Ultimately, KNN-imputed matrices contained fewer 
‘outlier’ values in its imputed values .

FEATURE SELECTION
One key aspect of our prediction system is developing clusters of 
countries at similar development stages with comparable risk profiles. 
Thus, we do not want to simply cluster country-year entities based on 
all their disaster and demographic features, but rather those features 
that most relate to a given disaster event . We used backward selection, 
with a linear model, to isolate those features (across the EM and WB 
datasets) most predictive of disaster outcomes, for each particular 
disaster type . From the initial list of over 300 EM and WB features, the 
final number of features after all processing ranges from 30-60 across 
disaster types .

Clustering using the unaltered WB features, however, results in skewed 
groupings, with nearly all the country/year pairs bucketed into 1 group . 
Possible explanations include the high number features (approximate-
ly 40-60 for different disaster types) and the high linear dependence 
among attributes . In particular, many of the features that persist in the 
WB set, even after backward selection, are highly correlated . Examples 
of such features include population density and number of live births . 
Clustering quickly becomes unreliable with a high number of noisy 
features .5 To address this and remove co-linearity in the attributes, 
we employed PCA . Across all disaster types, 5 principal components 
consistently captured over 50% of the variability in the WB feature 
vectors corresponding to each disaster type . To facilitate comparison 
between clusters within different disaster types, all WB features were 
reduced to 5 principal components . Using these dimensionality-re-
duced components gave more reasonable cluster groups, in agreement 
with the plots above . 
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Finally, we also explored partitioning country/year pairs based solely 
on disaster features . Again, we used k-means as our algorithm . The 
plots below, for earthquake and storm disasters, rescales the kmeans 
distances of EM features to 2-D and then plots the clusters . Interest-
ingly, as the plot suggests, country/year pairs can be partitioned into 
4 distinct groups, similar to WB features . This partitioning along solely 
disaster characteristics indicates, that, independent of how developed 
a country is, there exist different ‘disaster event profiles’ for a given di-
saster type . To test this notion, we then employed 2 distinct clustering 
mechanisms for country/year pairs: 1) clustering solely off of the (di-
mensionality-reduced) WB features and 2) independently clustering by 
WB features and EM disaster features (using 4 clusters, for each) . Our 
final analysis evaluates both mechanisms in our prediction system . 

 Earthquake EM  Storm EM 
 cluster plot cluster plot

RESULTS & ANALYSIS
A. Model Choice
Once all processing and clustering steps were completed, we began 
making predictions on the two primary outcomes for a given disaster 
type: number of people killed and cost . Note, these predictions were 
made within clusters of countries with similar risk and developmental 
profiles . Features, as previously described, consisted of dimension-
ality-reduced WB features and disaster features (both narrowed by 
backward selection to obtain a feature set more highly correlated with 
a given disaster type) .

Second and third degree polynomials, for both predictions on cost and 
killed, drastically overfit the training set . Cross-validated test errors 
for these models were significantly larger than those from simpler 
linear models . In predicting the number of people killed, however, two 
alternative models were tested . Since number killed is a form of count 
data, Poisson regression was implemented for each disaster type . With 
our updated design matrix X and parameters θ, the predicted mean of 
the associated Poisson distribution and likelihood are as follows:

       (3)

Surprisingly, the Poisson fit, across disaster types faired poorer than 
a base linear model . Again, comparisons were made using mean 
squared errors on cross-validated test sets . One reason for the poorer 
fit of the Poisson may be the distribution’s imposed equivalence of the 
mean and variance . Particularly for disaster outcomes, where variation 
is high even within a selected disaster type, this assumption does not 
appear to be valid . We then attempted a negative binomial fit, which 
allows for a gamma-mixture in the Poisson’s λ rate . While the negative 
binomial did outperform the Poisson regression models (allowing 
for a dispersion parameter Φ > 1 in most cases), base linear models 
continued to outperform these more sophisticated models . Due to its 
consistent performance, the following analysis was performed with 
our original regression hypothesis . The overall result of our prediction 
system is a series of linear models, each specific to a disaster type, 
that are trained off clusters of similar countries and can be used to 
make a prediction for a given country/year pair .

The two plots below show the progression of the testing R2 and mean-
squared error as components are added to our prediction system .

The pseudo code below summarizes the joint EM and WB cluster 
approach: 

Testing Results (R2) On Economic +Casualty Impact
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In general, while R2 measures range from moderate to poor, most 
of the components added to the system consistently reduced mean 
squared errors in test sets . This is most true in predicting the casualty 
from epidemics (the dotted blue line in the plot above) . Key insights 
from our results are discussed more below . 

B. Type of Clustering & Usage in Prediction Process
The two types of clustering performed in our analysis are 

1) based solely on WB features (M3 in above plots) and 

2) based on both WB and EM disaster features (M4 in above plots) . 

In case 2), country/year pairs are first assigned to cluster i
WB

, based 
on WB features and then an independent clustering run assigns the 
country/year pairs to cluster j

EM
, based on EM features . Predictions are 

made within each combined EM and WB cluster (i
WB

, j
EM

) .

For both estimated generalized error (2 .27 vs . 2 .31) and R2 (0 .39 vs . 
0 .26), approach 2) outperforms 1) . This confirms our clustering diag-
nostics, indicating that country/year pairs can be independently sorted 
based on ‘disaster event profiles’ and ‘development stage’ within a 
given disaster type . 

In order to more deeply understand the physical structure under-
lying our clustering design, we visualized the WB clustering index 
assigned to countries through the years in the map below . Colors in 
the map represent cluster indices, and countries that experienced a 
development stage shift (i .e . were assigned to different WB clusters in 
different years) are represented by multiple colors . One insight is that 
many of the clusters agree with intuition: for instance, Europe, along 
with Japan, Australia and a few other countries, is clustered separately 
from central/southern Africa . Additionally, we see a variety of changes 
in cluster assignments . Central and South America seem to shift from 
being clustered with parts of Europe to its own developmental group 
over time . This shifting pattern lends support for our decision to devel-
op clusters based on country/year pairs vs . countries alone .

To further analyze the makeup of our joint EM and WB clusters (i
WB

, 
j
EM

), we simulated our prediction process, where a country, disaster 
type, time of occurrence were given as inputs . Imagine, for instance, 
we were interested in predicting the number of people killed if an ep-
idemic were to happen in Ethiopia, in 2008 . Supplying these as inputs 
(along with EM features such as month of occurrence, duration, etc . of 
the epidemic), our prediction system could then grab the most recent 
year, 2008 or prior, of WB features for Ethiopia . With both EM and WB 
features (dimensionality reduced by PCA), the system then assigns 
Ethiopia-2008 to an appropriate joint EM/WB cluster (i

WB-Eth
, j

EM-Eth
), by 

minimizing the Euclidean distance of this joint feature vector to each 
cluster’s centroid . The map below highlights the countries that would 
be included in the extended training set for the causality ‘prediction’ 
for an epidemic in Ethiopia in 2008 . As expected, other central and 
South African nations are included in the cluster . Interestingly, Afghan-
istan and Pakistan are also assigned to (i

WB-Eth
, jE

M-Eth
) . Our system thus 

appears to intelligently use ‘similarly’ at-risk and developed countries 
to enhance a prediction for any particular country .

Testing Error On Economic +Casualty Impact

C. Differences in accuracy across disaster type
The accuracy of predictions vary greatly along disaster type . The linear 
models for estimating the number of people killed from epidemics, for 
instance, have an average R2, across all clusters, of 0 .78 and average 
mean squared test error of 1 .29 This contrasts with the linear models 
for storm killed predictions, which have an average R2 of 0 .23 and 
average mean squared test error of 2 .4 . One reason for this large 
variation in performance may relate to the nature of the disaster 
event itself . We’d expect epidemics to occur only in certain countries, 
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classified at a particular development stage . Moreover, when they do 
occur, they likely will have a consistent, quite harmful, impact on the 
countries they occur in . Storms, on the other hand, occur universally 
in almost every country . Their impact will vary highly, depending on 
a variety of intricate factors . We see through our clustering these 
intuitions are supported . When sequentially assigning country/year 
pairs to clusters i

WB
 and j

EM
 for epidemics, most country/year pairs 

(>100) are bucketed into a particular pair (i
WB

, j
EM

) = (1,2) . Conversely, 
when the same clustering mechanism is applied for storm disasters, 
country/year pairs are more evenly dispersed across a variety of (i

WB
, 

j
EM

) pairs . Thus, the economic and societal impacts of epidemics are 
more consistently associated with a particular country ‘risk profile’ and 
‘development stage,’ enhancing the model’s predictive power .

CONCLUSION
Our goal was to develop a methodology to aid in the prediction of 
outcomes of natural disasters for particular countries . We showed 
that pools of countries with similar demographic and disaster event 
features, can be used in a supervised learning problem to enhance 
predictions when compared to more naïve models . While accuracy in 
our predictions varied, many of our estimates are typical for natural 
disaster prediction .6 Ultimately, this analysis is but one step in a broad-
er effort to quantifiably identify those countries most in need of aid 
when catastrophe strikes . 
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